KENTUCKY

UK led University of Kentucky
At UKnowledge

Theses and Dissertations--Computer Science Computer Science

2016

CP-nets: From Theory to Practice

Thomas E. Allen

University of Kentucky, tomallen4@gmail.com
Digital Object Identifier: http://dx.doi.org/10.13023/ETD.2016.131

Right click to open a feedback form in a new tab to let us know how this document benefits you.

Recommended Citation

Allen, Thomas E., "CP-nets: From Theory to Practice" (2016). Theses and Dissertations--Computer
Science. 42.

https://uknowledge.uky.edu/cs_etds/42

This Doctoral Dissertation is brought to you for free and open access by the Computer Science at UKnowledge. It has
been accepted for inclusion in Theses and Dissertations--Computer Science by an authorized administrator of
UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu.

www.manharaa.com


http://uknowledge.uky.edu/
http://uknowledge.uky.edu/
https://uknowledge.uky.edu/
https://uknowledge.uky.edu/cs_etds
https://uknowledge.uky.edu/cs
https://uky.az1.qualtrics.com/jfe/form/SV_9mq8fx2GnONRfz7
mailto:UKnowledge@lsv.uky.edu

STUDENT AGREEMENT:

| represent that my thesis or dissertation and abstract are my original work. Proper attribution
has been given to all outside sources. | understand that | am solely responsible for obtaining
any needed copyright permissions. | have obtained needed written permission statement(s)
from the owner(s) of each third-party copyrighted matter to be included in my work, allowing
electronic distribution (if such use is not permitted by the fair use doctrine) which will be
submitted to UKnowledge as Additional File.

| hereby grant to The University of Kentucky and its agents the irrevocable, non-exclusive, and
royalty-free license to archive and make accessible my work in whole or in part in all forms of
media, now or hereafter known. | agree that the document mentioned above may be made
available immediately for worldwide access unless an embargo applies.

| retain all other ownership rights to the copyright of my work. | also retain the right to use in
future works (such as articles or books) all or part of my work. | understand that | am free to
register the copyright to my work.

REVIEW, APPROVAL AND ACCEPTANCE

The document mentioned above has been reviewed and accepted by the student’s advisor, on
behalf of the advisory committee, and by the Director of Graduate Studies (DGS), on behalf of
the program; we verify that this is the final, approved version of the student’s thesis including all
changes required by the advisory committee. The undersigned agree to abide by the statements
above.

Thomas E. Allen, Student
Dr. Judy Goldsmith, Major Professor

Dr. Mirostaw Truszczynski, Director of Graduate Studies

www.manaraa.com



CP-NETS: FROM THEORY TO PRACTICE

DISSERTATION

A dissertation submitted in partial
fulfillment of the requirements for the
degree of Doctor of Philosophy in the

College of Engineering at the
University of Kentucky

By
Thomas E. Allen

Lexington, Kentucky

Director: Dr. Judy Goldsmith, Professor of Computer Science

Lexington, Kentucky
2016

Copyright © Thomas E. Allen 2016

www.manharaa.com



ABSTRACT OF DISSERTATION

CP-NETS: FROM THEORY TO PRACTICE

Conditional preference networks (CP-nets) exploit the power of ceteris paribus rules to
represent preferences over combinatorial decision domains compactly. CP-nets have much
appeal. However, their study has not yet advanced sufficiently for their widespread use
in real-world applications. Known algorithms for deciding dominance—whether one out-
come is better than another with respect to a CP-net—require exponential time. Data for
CP-nets are difficult to obtain: human subjects data over combinatorial domains are not
readily available, and earlier work on random generation is also problematic. Also, much
of the research on CP-nets makes strong, often unrealistic assumptions, such as that deci-
sion variables must be binary or that only strict preferences are permitted. In this thesis,
I address such limitations to make CP-nets more useful. I show how: to generate CP-nets
uniformly randomly; to limit search depth in dominance testing given expectations about
sets of CP-nets; and to use local search for learning restricted classes of CP-nets from
choice data.

KEYWORDS: artificial intelligence, combinatorial preferences, decision making, appli-
cations of local search, conditional preference networks

Author’s signature: Thomas E. Allen

Date: April 29, 2016

www.manaraa.com



CP-NETS: FROM THEORY TO PRACTICE

By

Thomas E. Allen

Director of Dissertation: Judy Goldsmith

Director of Graduate Studies:  Mirostaw Truszczynski

Date: April 29, 2016

www.manharaa.com




To Susan, Luke, and Seth

www.manharaa.com




ACKNOWLEDGMENTS

Five years ago, after a number of years serving in a different profession, I returned to grad-
uate school to pursue a Ph.D. in computer science. I recognize how fortunate I am to have
had such an opportunity. Many people helped make this possible—more than I can pos-
sibly list here—and I am grateful for their encouragement and support along the way. In
particular, I am grateful for my advisor, Dr. Judy Goldsmith. Shortly after I began planning
to pursue graduate studies, I came across some of her journal articles on computational
decision making. We met for lunch at the Mellow Mushroom restaurant in Lexington. I
rambled on about my “crazy idea” of pursing a career in academia, and she encouraged me
to take the GRE and apply to Ph.D. programs. This was the start of a mentoring process
that has continued up to the present time. I am grateful for her extraordinary support and
friendship throughout this process. I am thankful also to Dr. Raphael Finkel, the Director
of Graduate Studies for the Department of Computer Science at the time. I had submit-
ted all the pieces of my application for admission except the essay explaining my goals
in pursuing a Ph.D., which at that point were somewhat less than clear. He took the un-
usual step of contacting me by telephone and admitting me to the program after a lengthy
conversation. I am grateful to the members of my Doctoral Advisory Committee. In addi-
tion to Dr. Goldsmith, who served as the director, that committee consisted of Drs. Mirek
Truszczynski, Victor Marek, Clyde Holsapple, and Paul Eakin. Dr. Truszczynski, in addi-
tion to serving as our current Director of Graduate Studies, suggested the journal in which
we found the article with the encoding for directed acyclic graphs that proved foundational
to the method of generating CP-nets that I describe in Chapter 4; I also had the privilege
of taking Dr. Truszczyfiski’s special topics course in social networks. From Dr. Marek, 1
took two courses, one on databases and another on Constraint Satisfaction Programming.

The latter introduced me to the use of SAT solvers, which ultimately led to the DT-SAT

il

www.manaraa.com



reduction that I describe in Section 5.6.2. From Dr. Holsapple, I took a course on Deci-
sion Support Systems that helped motivate some of my interest in practical applications for
CP-nets. Dr. Holsapple also provided constructive feedback on an earlier draft of this dis-
sertation that resulted in many improvements. I am grateful also to Dr. Eakin, the external
member of the committee, for his time and effort near the end of the process.

I am especially grateful to my coauthors. They perused my sometimes bewildering
early drafts, asked hard questions and helped me to expand, clarify, and in some cases cor-
rect my ideas. Some of them wrote software or revised problematic passages. Dr. Nick
Mattei of Data61l and UNSW Australia collaborated with Dr. Goldsmith and me on the
workshop paper [2] that eventually led to Chapter 4. Kayla Raines and Hayden Elizabeth
Justice, both of whom were undergraduate students at the time, assisted with a later version
of that work that was accepted for publication at the prestigious AAAI-16 conference [5].
Cory Siler, another undergraduate student, collaborated with Dr. Goldsmith and me on an
earlier draft of what is now Chapter 6. Cory also contributed much of the programming for
the experiment summarized in 6.2, as well as the implementation of Lehmer codes men-
tioned in Section 4.2. Dr. Joshua T. Guerin of the University of Tennessee Martin kindly al-
lowed me to assist in rewriting a chapter of his dissertation for a conference publication that
was ultimately accepted for presentation at ADT 2013 [47]. That was my first academic
publication and also my introduction to conditional preference networks. I am grateful to
Dr. Francesca Rossi, whom we visited at the University of Padua in Italy in November
2013, and to her students, in particular Cristina Cornelio, who introduced us to PCP-nets;
they provided invaluable feedback on our work. In addition, Drs. Rossi, Goldsmith, and I
later collaborated on a CP-nets tutorial at AAAI-16. I am grateful to Dr. Mike Regenwetter
of the University of Illinois Urbana-Champaign, and to his students, in particular Dr. Anna
Popova, Muye Chen, and Chistopher Zwilling. Drs. Regenwetter, Goldsmith, and Rossi
and their labs have collaborated on a human subjects study involving CP-nets [3] that has

been nearing completion for the past several years. Mike also introduced me to his col-

v

www.manaraa.com



league, Olgica Milenkovic, leading to the invitation to present my paper on CP-nets at the
Allerton Conference in 2013 [1], parts of which later found there way into Chapter 5. Five
of my papers—three conference papers [3, 5, 47] and two workshop papers [2, 4]—also
went through a referee process, occasionally more than once. Along with my coauthors I
am grateful to the anonymous reviewers for their constructive critiques.

My studies at the University of Kentucky were made possible by teaching and research
assistantships and fellowships, including a grant from the National Science Foundation
(CCF-121598), Graduate School Academic Year Fellowships in 2013-2014 and 2015-
2016, a Verizon Fellowship in Fall 2014, and the Thaddeus B. Curtz Memorial Scholarship
Award in 2012. I am also grateful to the citizens of the Commonwealth of Kentucky, where
I have lived since 2004, for their support of higher education.

I am deeply appreciative also of my family and friends for their support in this endeavor.
I still remember the considerable satisfaction of my father, Dr. T. Eugene Allen I1I, when he
completed his Ph.D. in political science when I was a small child. He and my mother, Ann
Lyn Allen, who was also my high school mathematics teacher, met in a statistics class in
graduate school. They instilled in me a high regard for the value of education. My siblings,
Dr. Martha Allen-Dietrich of Georgia College and State University, and Dr. Timothy E.
Allen of the University of Virginia, have also offered guidance and encouragement during
my transition into academic life. Finally, and most especially, I am grateful to Susan,
my wife, and to my sons, Luke and Seth, for letting me devote so many years to such a
challenging and transformative process. My appreciation for them is beyond words, and to

them this work is lovingly dedicated.

www.manaraa.com



TABLE OF CONTENTS

Acknowledgments . . . . . . . ... 1ii
Table of Contents . . . . . . . . . . . . . . . e e vi
Listof Tables . . . . . . . . . . . e viil
Listof Figures . . . . . . . . . . . . X
Chapter 1  Introduction . . . . . . . . . . . ... 1
1.1 Preferences . . . .. . . . . . . . ... e 2
1.1.1  Utility, Strict Preference, and Indifference . . . . . . ... ... .. 4

1.1.2  Incomparability, Incompleteness, and Missing Information . . . . . 5

1.1.3  Transitivity and Inconsistent Preferences . . . . . . . .. ... ... 6

1.1.4 Factored Outcomes and Ceteris Paribus Preferences . . . . . . . . . 8

1.2 Preferences over Combinatorial Domains . . . . .. ... .. ....... 9
1.2.1 Non-compact Representations . . . . . .. .. ... .. ...... 10

1.2.2  Compact Preference Formalisms . . . . . ... ... ... ..... 11

1.2.3 Common Problems in Preference Handling . . .. ... ... ... 13

1.3 Conditional Preference Networks . . . . . . . ... ... ... ....... 15

1.4 CP-nets: Challenges to Adoption . . . . . . ... .. ... .. ....... 18
Chapter 2 Definitions . . . . . . . . . . . . e 20
2.1 OrderedSets . . . . . . . . . . . e e 20

22 Graphs . . . .. e 21

2.3 OUtCOMES . . . v v o v e e e e 25

2.4 Preferencesand CP-nets. . . . . . . . ... ... ... ... ... ... 26

2.5 Commonly Used Notation and Abbreviations . . . . . . ... .. .. ... 33
Chapter 3 Related Work . . . . . . . .. ... . . L 38
3.1 General and Restricted CP-net Models . . . . ... ... .......... 38

3.2 Finding Most Preferred Outcomes . . . . . . . ... ... ... ...... 39

3.3 Checking for Consistency . . . . . . . . . .. .. ... 40

34 ReasoningwithCP-nets . . . . . .. ... ... ... ... ......... 41
34.1 Dominance Testing . . . . . . . .. .. ... ... ... 41

34.2 Ordering Queries . . . . . . . .. . .. e 42

3.4.3 Reductions and Heuristic Methods . . . . . . .. ... .. .. ... 43

3.5 LearningCP-nets . . . . ... .. .. ... .. .. ... 43

3.6 Experiments withCP-nets. . . . .. ... ... ............... 46

3.7 Extensions to the Formalism . . .. ... .. ... ... .......... 47

vi

www.manaraa.com



Chapter 4  Generating CP-nets Uniformly at Random . . . . . ... ... ... .. 49

4.1 Naive Generation, Bias, and Degeneracy . . . . . . .. ... ... ..... 50
4.2 Counting and Generatingthe CPTs . . . . . . . ... ... ... ... ... 54

4.3 Encoding and Counting Dependency Graphs . . . . . . .. ... ... ... 60
4.4 Generating CP-nets . . . . . . . . . . . . e 66
4.5 Generating Outcomes and DT Problem Instances . . . . .. ... .. ... 74
4.6 Conclusion . . . . . . . . . . e e 75
Chapter 5  Depth-Limited Dominance Testing . . . . . . . .. ... ... ..... 76
5.1 Preliminaries . . . . . . . . . .. L 77

5.2 Experiment 1: An Exhaustive Consideration of Tiny Cases . . . . . . . .. 81

5.3 Experiment 2: Sampling CP-nets and Solving DT for all Outcomes . . . . . 90
5.4 Experiment 3: A Consideration of Larger Instances . . . . . ... ... .. 95

5.5 Are Preferences Really Transitive? . . . . . . . ... ... ... ...... 99
5.6 Depth-Limited Dominance Testing . . . . . . ... ... ... ....... 100
5.6.1 Depth-Limited DT* . . . . . .. ... ... ... ... .. ..... 101

5.62 DT-SAT . . . . . 102

5.7 Conclusion . . . . . . . . .. 106
Chapter 6  Local Search for Learning Tree-Shaped CP-nets . . . . . . . .. .. .. 108
6.1 Background . . . . . .. ... 109

6.2 Encoding Tree-shaped CP-nets . . . . . . .. ... ... ... ....... 112

6.3 Evaluatinga Learned Model . . . . ... ... ... ... ... ...... 121
6.4 Learning vialLocal Search . . . . ... ... ... ... .. ........ 123

6.5 Experiments . . . . . . . . ... e e e e 126

6.6 Conclusion . . . . . . . .. ... 133
Chapter 7 Conclusion . . . . . . . . .. L 134
Bibliography . . . . . . .. 135
Vita . . e 143

vii

www.manaraa.com



2.1
2.2

3.1
3.2
3.3

4.1
4.2
4.3
4.4
4.5

5.1
5.2
53
54
5.5
5.6
5.7
5.8

6.1
6.2

LIST OF TABLES

Commonly Used Acronyms . . . . . . . . . .. ... ... 33
Commonly Used Notation . . . . . .. .. ... ... ... . ........ 34
CP-nets Characterized by Dependency Graph . . . . . ... ... ... .... 40
Computational Difficulty of Dominance Testing . . . . . .. ... ... .... 42
Evaluation Methods for Proposed CP-net Algorithms . . . . . . .. ... ... 47
Values of ¢,(m) and yp(m)form=0toS5. . . . . ... ... ... ... .... 56
Odds of Generating a Degenerate Function at Random on a Given Attempt . . . 60
Number of DAGs a,, . with n Nodes and Bound ¢ on Indegree . . . . . . .. .. 66
Number of Binary CP-nets with Complete CPTs and Unbounded Indegree . . . 70
Values of a,, .4 for Small Values of n,c,andd . . . . ... ... ... ..... 71
Computational Difficulty of Dominance Testing (Table 3.2 Revisited) . . . . . 79
Cardinalities of O and DTN, O) . . . . . . . . . o e 80
Number of DT Solutions Given HD and FL (n = 9;c=1landc=2) ... ... 92
Number of DT Solutions Given HD and FL (n = 9;c=3andc=4) . ... .. 93
Mean Flipping Length Given n, ¢, and h (forn =5t09) . . . . . . ... .. .. 94
Mean Flipping Length Given n, ¢, and h (Binary Variables,n = 10to 15) . . . . 97
Mean Flipping Length Given n, ¢, and h (Multivalued Variablesd =3) . . . . . 98
Noise Model for Maximum Reliable Flipping Lengths . . . . . . . . ... ... 100

Number of Tree-Shaped CP-Nets (Respectively Treecodes) with n Binary Nodes 118
Walk-CP-net Experiment4 (NoNoise) . . . . . ... ... ... ... ..... 132

viii

www.manaraa.com



LIST OF FIGURES

1.1 A Subject’s Preference Order and a Model Consistent with that Order . . . . . 6
1.2 APreference Cycle . . . ... .. .. . .. ... 7
1.3 Intransitive Indifference . . . . . . . . . ... Lo Lo 8
1.4 Non-compact Representations of the Same Strict Preference Relation . . . . . . 11
1.5 CP-net and Induced Preference Graph . . . . . . ... ... ... ... .... 15
1.6 A CP-net with Indifference over Multivalued Domains . . . . . . .. ... .. 17
2.1 Labeled Digraphs . . . . . . . . . . . . . e 22
2.2 Common Classes of Digraphs (n =6) . . . . ... ... ... ... ...... 24
23 ASimple CP-net N . . . . . . . . . e 27
2.4 Induced Preference Graph H of CP-net N (see Figure 2.3) . . . . . .. ... .. 29
2.5 Cyclic CP-nets and Induced Preference Graphs . . . . . . ... ... ... .. 32
4.1 An Example of Degeneracy inCP-nets . . . . . . ... ... ... ....... 51
4.2 Degeneracy Can Violate Basic Assumptions of an Experiment . . . . . . . .. 52
4.3 How Naive Generation Can LeadtoBias . . . . . .. ... ... ... ..... 53
4.4 CPT and Corresponding Boolean Function . . . . . .. ... ... ....... 54
4.5 Multivalued CPT and Mapping . . . . . . . . . . . . . .. . ... 55
4.6 Algorithm: Decide Whether a CPT Is Degenerate . . . . . .. ... ... ... 57
4.7  Algorithm: Decide Whether Function Vector F is Degenerate . . . . . . . . . . 59
4.8 Algorithm: Generate a DAG from its Dagcode . . . . . . ... ... ... ... 61
4.9 Algorithm: Generate All DAGs that Extend Dagcode A.; . . . . ... ... .. 64
4.10 Algorithm: Generate All CP-nets that Extend A_; . . . . . ... ... ... .. 67
4.11 Algorithm: Construct CP-net from its Encoding . . . . . . .. ... ... ... 68
4.12 Algorithm: Generate a CP-net Uniformly at Random . . . . . ... ... ... 72
4.13 Algorithm: Compute Tables for Uniform CP-net Generation . . . . ... . .. 73
5.1 CP-net Describing Client’s Preferences on Activities (Figure 2.3 Revisited) . . 78
5.2 Flipping Sequence in Induced Preference Graph (Figure 2.4 Revisited) . . . . . 78
5.3 [Initial Experiment: All DT Instances Upton=4 . .. ... ... ... .... 82
5.4 Algorithm: Uncompact CP-net to Obtain Preference Graph . . . . . . . .. .. 82
5.5 CP-net, Adjacency Matrix, and Preference Graph . . . . . ... .. ... ... 83
5.6 Number of DT Solutions Given Hamming Distance and Flipping Length . . . . 84
5.7 Mean Flipping Length £ = MFL(N,, O, | HD(0,0') = h) . . . . . ... .... 87
5.8 Cumulative Density Function (c.d.f.) Resulting from Figure 5.6 . . . . . . . .. 87
5.9 Mean Flipping Length £ as a Functionof HD hand APLL . . . .. ... ... 89
5.10 Distribution of Parameter Values over DT Problem Instances (n =4) . . . . .. 89
5.11 Second Experiment: Sample CP-nets, Solve for All Outcome Pairs . . . . . . . 91
5.12 Distributionof HDforn=15. . . . . . . . .. .. .. . oo 95
5.13 Third Experiment: Sample Outcome Pairs and CP-nets . . . . . ... ... .. 96
5.14 An Exceptionally Long Flipping Sequence . . . . . . . .. ... ... ..... 99
ix

www.manaraa.com



5.15 Generic Algorithm: Depth-Limited Dominance Testing . . . . . . .. ... .. 102

5.16 Solver Algorithm: Depth-Limited DT* . . . . . . .. ... ... ... ..... 103
5.17 Solver Algorithm: DT-SAT . . . . . . . .. . ... ... ... ... 104
6.1 Tree-shaped CP-nets . . . . . . . . . . . . .. ... ... .. ... 110
6.2 Rooted Trees . . . . . . . . . . 111
6.3 Algorithm: Tree to Priifer Code [60] . . . . . . . ... .. ... ... ..... 114
6.4 Algorithm: Priifer Code to Tree [60] . . . . . . . . .. .. ... ... ..... 115
6.5 Algorithm: Tree-shaped CP-netto Treecode . . . . . . . ... ... ... ... 116
6.6 Algorithm: Treecode to Tree-shaped CP-net . . . . . . ... ... ... .... 116
6.7 Treecodes Corresponding to the Tree-shaped CP-nets in Figure 6.1 . . . . . . . 117
6.8 Algorithm: Generate All Tree-Shaped CP-nets . . . . . . ... ... ... ... 119
6.9 Algorithm: Generate Random Tree-Shaped CP-net . . . . ... .. ... ... 120
6.10 Algorithm: Walk-CP-net . . . . . . . ... .. ... .. ... ... ... ... 125
6.11 Algorithm: Generate Choice Data . . . . . . .. ... ... ... ....... 127
6.12 Walk-CP-net Experiment 1 (NoNoise) . . . . . .. .. ... ... ... .... 129
6.13 Algorithm: Find a Best Tree-Shaped CP-net Globally . . . . . . .. ... ... 130
6.14 Walk-CP-net Experiment 2 (Noise Level p=0.02) . . ... .. .. ... ... 130
6.15 Walk-CP-net Experiment 3 (Noise Level¢g=0.03) . . ... ... ... .... 131
X

www.manaraa.com



Chapter 1 Introduction

This dissertation involves models of computational preferences in the field of artificial
intelligence—in particular, a class of models known as conditional preference networks
(CP-nets). Increasingly, through advances in artificial intelligence, we entrust the details
of our lives to machines. In the near future it seems likely that autonomous vehicles will
deliver our packages and chauffeur us. Smart homes and other assistive technologies will
provide for the elderly, the disabled, and the young, as well as many of us who are usu-
ally quite capable of caring for ourselves, but who nevertheless prefer not to do our own
cooking, cleaning, and maintenance. Already, various mobile applications are helping plan
our schedules, suggesting activities, and influencing our decisions and social interactions
on a wide scale through such innovations as recommender systems and Al-based decision
support systems.

Of course, there is more than one way that such a future could play out. Dystopian
science fiction novels and films continually remind us that this could all be a Faustian
bargain. Already, many of us wonder if our smart phones, fitness bands, and various other
clanging, buzzing devices have in fact changed our lives for the better. On the other hand,
one can envision a more promising future, in which disabled people can participate in
society more equitably and in which all of us can focus our energies on the pursuits and
relationships that we value most, leaving the frustrating drudgery to machines.

For this second, brighter future to be possible, the machines must have some way of
knowing what we want. Suppose I step into my autonomous vehicle in a few years. What
type of route do I prefer, the scenic route or one that is more direct? Would my answer
always be the same? Presumably, it would sometimes differ depending on various con-
ditions. If my schedule that day were busy, I may prefer the more direct route. On the

other hand, if the car were taking care of the driving, perhaps a more peaceful route would

www.manaraa.com



allow me complete my presentation, or at least arrive at my destination less harried, more
prepared to meet the challenges at hand.

Computational models such as CP-nets provide a way to represent such preferences.
A machine can then use such a representation—a mathematical model—to reason about
what I would prefer under various circumstances. The machine could then recommend
alternatives to me, or even act as my proxy, making decisions on my behalf. I’'m sorry
Tom. I'm afraid I can’t do that. Yes, the scenic route would be nice, but—don’t forget—you
have a class to teach! As we will see, CP-nets have much to offer. On the other hand,
matters involving computational complexity have thus far stymied the integration of CP-
net models and algorithms into actual applications. This thesis addresses some of those
problems so that machines of the near future can better understand our preferences and
adapt to us.

Section 1.1 offers a brief introduction to how one can go about modeling preferences
mathematically. Section 1.2 discusses the major computational problems that go along
with such models. Section 1.3 introduces our primary topic in this dissertation, conditional
preference networks. Section 1.4 discusses some of the challenges to the adoption of CP-

nets. An overview of subsequent chapters follows.

1.1 Preferences

Modeling, capturing, and reasoning with preferences is a fundamental topic that spans
artificial intelligence, including constraint programming [90], social choice [22], recom-
mendation systems [85], machine learning [38], and multi-agent systems [41]. Preferences
have also been studied in philosophy, economics, psychology, and other disciplines. Let us

consider two example applications that motivate our later discussions.

Example 1. Consider that a foodservice distributor has created a decision support system
for its salespersons. The system advises representatives on when to contact food service op-

eratorsyalongwith.guestions to ask, issues to address, and products to recommend. Among

www.manaraa.com



the many features of the system is one that tracks the preferences of each customer. What
items does the customer buy? When do they buy each item? Which items are purchased
together? If a particular item is not available, what else does that affect in the order? Such
data are mined to construct a profile that can support the activity of the sales representative
and increase the customer’s satisfaction. For example, the system may have learned that
when a certain pastry chef buys pecans, she also increases her order of brown sugar. It
may also have learned that she prefers a particular variety of pecans (Pawnee) to others
(e.g., Schley). Thus, if more brown sugar has been ordered than usual, the representative
may be prompted to ask about pecans and specifically to mention the Pawnee variety if

these are in stock.

Example 2. Next consider that a team of engineers has designed a home automation system
to provide support to persons of advanced age who wish to continue living independently.
The system enforces a set of (hard) constraints, such as that indoor temperature must be
within a range commensurate with human health and that rooms must be sufficiently well-
lit when the subject is moving through the house. Aside from these, however, the system
allows the subject maximal determination over his environment. That is, subject to con-
straints, control of the home is governed by the subject’s preferences. We expect that such
preferences will sometimes be conditional; for example, the subject may prefer to converse
by video with a friend on a particular night of the week, but play a favorite video game on

some other night.

Systems such as these require some way to model, learn, reason with, and perhaps ag-
gregate preferences. Preferences involve at least one subject, sometimes known as the user
or decision maker, and a set of objects O, known as candidates, outcomes, or alternatives,
depending on the context. Formal definitions will follow in Chapter 2, but for now, we
can say informally that a subject prefers the first object (0) to the second (0’) if the first
is “better” or makes her “happier” or “more satisfied” than the other in a given setting.

Symbolically,.one.canwrite this as o > o’. Such expressions of course also have a dual

www.manaraa.com



form, because we can just as easily say that the second object is “worse” or makes her less

happy, which one can write as o’ < o.

1.1.1 Utility, Strict Preference, and Indifference

A common assumption in economics is that the subject associates with each object a real-
valued wutility that depends on the value or happiness that the object provides. Under this
assumption, o > o’ suggests that the utility of the first object exceeds that of the second;
that is, u(o) > u(o’). A natural idea, then, would be to model this utility functionu : O — R
explicitly—either the value of each object to the subject or, perhaps even better, what the
subject’s utilities should be if she had perfect information. In many settings, however, it
is difficult to assign numerical values even when the preference is apparent. Suppose a
subject would like to play the board game Monopoly with a friend. All things being equal,
she prefers to play this game with Sarah rather than Tamara. However, she may be unable
to quantify just how much she prefers Sarah to Tamara in this context. She may find it
difficult or discomfiting to assign values to her two friends. As observed in Section 1.2.2,
it is in fact possible to use utility functions to model preferences. Throughout most of
this work, however, preferences are modeled qualitatively, leaving the underlying utilities
implicit, something for economists to ponder.

Sometimes a subject may be equally happy with two objects. In that case, we say that
the subject is indifferent as to the two and write o ~ o’. Note that this does not necessarily
imply that the two objects are the same (in which case one could write 0 = 0") or that he
is unable to distinguish the two. When a friend tells us that he is equally happy with fair
weather and snow, we do not generally assume that he is unable to distinguish the two.
On the other hand, if two objects really are the same, we will assume that the subject is
indifferent; i.e., 0 =0 = o0~ 0.

The possibility of indifference allows us to speak of weak preferences, in contrast to

those that are strict (or strong). For example, a subject may say that one object is “at

www.manaraa.com



least as good as” the second, which one can write, 0 > o’. In this case the subject may
either strictly prefer the first object (0 > 0’) or may be indifferent (0 ~ 0”). Additional
information would be needed to determine which of these is the case. If we were to later
learn that the subject regards the second object as at least as good as the first (0’ x> 0), we
could then reason that the subject is indifferent as to the two objects, assuming the subject’s

preferences are expressed in a consistent way.

1.1.2 Incomparability, Incompleteness, and Missing Information

In some cases, a subject may find it impossible to compare two objects. When this occurs,
we refer to the two objects as incomparable and write o || o’. Incomparability can occur
when two objects are vividly different or when some multicriteria decision is involved. For
example, if each of two candidates in a political election has one quality that a voter admires
and one quality she despises, she may find it difficult to compare the two. Incomparability
can also occur when the subject lacks information about the objects. For example, a diner
perusing a menu in some foreign language that he hardly understands may be unable to
compare various items on the menu. This does not mean, however, that he is equally happy
with all of the items. In other words, incomparability is not the same as indifference; it
simply means that the subject is unable to state a preference.

It is important, however, to distinguish a lack of information by the subject from the
lack of information of an observer, for example, an artificial agent' that is assisting the
subject through recommendations [80]. Incomparability and missing information are thus
related, but not identical. If we, as an outside observer, know that the subject is unable to
compare two objects because the subject has a lack of information, then we may say that
the subject finds the two objects incomparable. However, if we simply do not know the
subject’s preferences, then we cannot say with any certainty that the subject finds the two

objects incomparable. He may prefer one to the other or be indifferent. This can occur

'In this work, except where otherwise noted, agent refers to an artificial intelligence application.

www.manaraa.com



when we have not yet asked the subject about his preferences, when he has declined to
reveal them to us because of a lack of trust, or when he simply has never thought about his
preference over this pair of objects. In such cases one may write 0 ? 0’.

A related situation arises when the subject does in fact have a preference, but the model,
while consistent with that preference, does not include it in the representation. For example,
consider that a subject prefers o > o’, 0 > 0”, and 0o’ > 0”. Suppose further than we
model this preferences o > o’ A 0 > 0”, but omit the relationship between o’ and 0"
from the model—perhaps out of a desire for a more succinct representation. Observe that,
mathematically, the model is a partially ordered set (poset) of objects, while the subject’s
true preferences are a linear extension of that poset (see Figure 1.1). In this case, then,
incomparability arises not from the subject herself, nor from the observer’s knowledge of

the subject, but from how the preferences are modeled.

RN N

0 ¢ 0/ ¢ 0// 0 ¢ 0/ 0//

(a) True preference (b) Preference model

Figure 1.1: A Subject’s Preference Order and a Model Consistent with that Order

Thus, in discussions about preferences, incompleteness has different meanings. How-
ever, it also has an unambiguous mathematical meaning: We say that a preference relation
is incomplete if any two objects in the set are incomparable; otherwise, the relation is com-
plete. Most often in this work, we will reserve the words complete and incomplete for

situations where we have in mind the mathematical concept.

1.1.3 Transitivity and Inconsistent Preferences

Ordinarily we regard preferences as transitive. That is, if there are three objects, and the
subject prefers the first to the second and the second to the third, then we can infer that the

subject also prefers the first to the third, even if we have not asked her explicitly to compare

www.manaraa.com



these two objects directly. That is, we say thato > o’ A 0o’ > 0” = o0 > 0", and may
write 0 > 0’ > 0"’ to emphasize this. Moreover, if transitivity is violated—if a subject tells
us that he strictly prefers the first object to the second, the second to the third, and the third
to the first—we say that the subject’s preferences contain a cycle (see Figure 1.2). Through
the transitive property, we can see that each object is strictly preferred to itself. We call

such preferences inconsistent and may reason that the one who holds them is irrational.

7N
0// 0
k"

Figure 1.2: A Preference Cycle

Customarily, we also regard indifference as transitive. Thatis,o ~ 0" A 0" ~ 0" =
o ~ 0""; hence we may write 0 ~ 0’ ~ 0”, chaining the ~ operator as we do for >. However,
in human preferences this assumption does not always hold. Consider the example, cited
by Peter C. Fishburn [36], of a person’s preferences over the amount of sugar in coffee (see
Figure 1.3). Suppose that the subject is accustomed to coffee with no sugar. Nonetheless,
if asked in a taste test to choose between a cup of coffee without sugar and one with only 1
grain of sugar, we expect that she would be indifferent. Similarly, she would be indifferent
to a choice between a cup with 1 grain and one with 2 grains; the difference would again
be imperceptible. However, given a choice between a cup of coffee with no sugar and a
cup with ten spoonfuls of sugar, it is unlikely that she would still be indifferent! Formally,
0~1~2~:--~1000 = 0 ~ 1000. In most of the discussion that follows, however,
we will assume that transitivity holds for indifference (and hence also weak preferences)
as well as strict preferences.

On the other hand, incomparability, in the sense that it is used in this work, is not
transitive. Consider a café owner who strictly prefers oranges to bananas, but has never
heard of durians, a fruit native to southeast Asia. Because he has never before encountered

this particular fruit, he cannot compare it to either oranges or bananas. Thus, oranges ||

www.manaraa.com



0 grains 1 grain 2 grain 1000 grains

Figure 1.3: Intransitive Indifference

durians and durians || bananas, but these facts do not imply that oranges || bananas. In fact,
in this case we have already established that the subject has a strict preference: oranges >
bananas. Thus, one should not write expressions of the form o || o’ || 0o” because this

incorrectly suggests transitivity, which in general does not hold for incomparability.

1.1.4 Factored Outcomes and Ceteris Paribus Preferences

Throughout this work, the objects over which a subject holds preferences will be char-
acterized by features (or attributes). Example 1 mentions a pastry chef who sometimes
purchases pecans. Pecans can be characterized by various features, such as vARIETY (e.g.,
Pawnee or Schley) and whether they have already been SHELLED (shelled or unshelled).
When objects are factored in this way, they are typically called outcomes, because they are
the outcome of how their characteristic features have been instantiated. For clarity, such
features may be written in sMaLLCcAPS, with their associated values in italics.

When outcomes are factored, a subject may hold ceteris paribus preferences over the
features. When the chef says that she prefers Pawnee pecans, she does not necessarily
mean that she prefers every Pawnee order to every Schley. Other factors may also affect
her happiness with the order, such as price, quality, expected date of delivery, and so on.
However, if all other factors are held constant, she prefers the Pawnee to other varieties.
All else being equal (Latin ceteris paribus), she prefers one variety to another.

Ceteris paribus preferences can be conditional or unconditional. Suppose the buyer
does in fact always prefer the Pawnee variety to the Schley. In that case, the preference
does not depend on any other factor, so it is said to be unconditional. One can write this

preference as Pawnee > Schley. Note that the notation here is identical to that used for

www.manaraa.com



preferences over outcomes. Context, however, makes it clear that the preference is of the
ceteris paribus type, because Pawnee and Schley describe one attribute of a pecan rather
than fully instantiated outcomes.

Often a preference does depend on the value of additional other features. Suppose
the chef prefers that pecans be shelled prior to shipping if they are Pawnee, but shipped
unshelled if they are Schley. In this case the ceteris paribus preferences are conditional.
One can write this as Pawnee : shelled > unshelled and Schley : unshelled > shelled, where

the : operator indicates the dependency.

1.2 Preferences over Combinatorial Domains

In Sections 1.1.1-1.1.3 we considered how to model a subject’s preferences over a set of
objects as a mathematical relation.” In Section 1.1.4 we considered that the objects could
be multi-featured outcomes. Features complicate things. Consider an assistive robot that
must visit a deli and purchase lunch for a client. The client has a busy schedule and cannot
be contacted during the process. The deli offers a combinatorial number of alternatives.
That is, customers have a choice of breads, meats, cheeses, vegetables, condiments, and so
on. Of all possible sandwiches that can be assembled, which does the busy client prefer
most? Suppose the client has asked for a tuna salad sandwich with only cucumber and
tomato, but no tuna is available that day. What is her next best alternative? If turkey is
selected instead of the tuna, will she still prefer cucumber and tomato, or some different
set of toppings? Suppose further that the robot does not have the luxury of stopping by
a deli, but must choose instead from a vendor who offers a set of preassembled, wrapped
sandwiches. Further suppose that the offering of sandwiches varies from day to day. Given
today’s choices, which one will the client prefer most? Note that the client may also have
specific constraints—e.g., religious requirements, or a minimum or maximum number of

calories, or some maximum amount that she is willing to spend on a sandwich.

2Henceforth, when we speak of preferences, we will assume that they are those of a particular subject.

www.manaraa.com



A variety of methods have been proposed for modeling preferences over combinatorial
domains. We first discuss two non-compact representations, the preference graph and the
partial order graph, because these inform our later discussions (Section 1.2.1). We then
consider some examples of compact models such as GAI value functions and soft con-
straints (Section 1.2.2). In Section 1.2.3 we introduce some of the more common problems
in preference handling: learning preferences, finding most preferred outcomes, reasoning

with preference models, and aggregating preferences.

1.2.1 Non-compact Representations

If the objects over which a subject holds preferences are conceived as factored outcomes
(see Section 1.1.4) then one can observe that the number of these outcomes will be expo-
nential in the number of features. Consider some foodservice product from Example 1 that
can be fully described by 10 binary features (e.g., type, color, brand, gluten-free, etc.). The
total number of outcomes is then 2'° = 1024. If the number of features is increased to 20,
the number of outcomes is 2%°, greater than one million. This does not mean, of course, that
each such outcome is available for purchase or even that it presently exists in the physical
world. Nonetheless, it is possible to conceive of each outcome and thus plausible that a
subject may hold preferences over it. Indeed, if customers prefer an object that does not
yet exist, this is valuable information.

We can conceive of a matrix or graph that represents a subject’s preferences over every
pair of outcomes (see Figure 1.4a). In the example, the entry 1 in the cell in row ab and
column ab indicates that ab > ab; the entry O in row ab and column ab indicates that
ab ¥ ab. If outcomes are labeled with n binary features, there would be 2" outcomes in
all, requiring a matrix with 2>" entries. If we limit ourselves to strict preferences, then we
reduce the number of such entries by about half: because o > 0" implies 0’ # o and 0 * o
for all i, we can limit our attention to the cells of the upper triangular representing distinct

unordered pairs of outcomes (as in Figure 1.4b).

10

www.manaraa.com



> |ab ab ab ab > |ab ab ab ab ab ab

ab| 0 0 0 O ab| - 0 0 O

ab| 1 0 1 1 ab| - - 1 1

ab| 1 0 O O ab | - - - 0

ab| 1 0 1 0 ab | - - - ab > Tb
(a) Full Preference Relation (b) Full Strict Relation (c) Preference Graph

Figure 1.4: Non-compact Representations of the Same Strict Preference Relation

If the preferences can be modeled consistently by ceteris paribus rules, as introduced
in Section 1.1.4, we can reduce the number of entries even further. In that case, it is
sufficient to represent only the relationship between pairs of outcomes that differ in the
value of just one variable. By exploiting transitivity in this way, we can represent a set of
preferences as a graph in which each vertex represents a conceivable outcome. A directed
edge from one vertex to another means that the second vertex is strictly better than the first
(or weakly better if indifference is allowed). Furthermore, such an edge can exist only if
the two vertices differ in the value of just one feature. To compare outcomes that differ
in more than one feature, we check for a path connecting the two along directed edges.
For example, in Figure 1.4c, the path from ab to ab indicates that ab > ab. Such a graph
is known as a preference graph [16] or sometimes as the outcome graph. Note that the
preference graph takes the geometric shape of a hypercube if all of the features are binary.

Another noncompact representation is a type of polytope known as the partial order
graph [83]. In this representation, vertices represent all (or some subset of) strict partial
orders over objects rather than the objects themselves. Such objects are not necessarily fac-
tored outcomes. Moreover, it is possible also to represent non-strict and even inconsistent

orders, such as o > 0o’ > 0"’ > o (see Figure 1.2), as vertices.

1.2.2 Compact Preference Formalisms

The representations discussed in Section 1.2.1 require polynomial space in the number of

outcomes, which is exponential in the number of features n. If n is large, such a rep-

11

www.manaraa.com



resentation is infeasible. We are thus interested in compact models for which the space
requirement is polynomially bounded in the number of features. Various compact pref-
erence formalisms have thus been designed that leverage closed-form functions or logical
rules to enable models that scale as the number of features increases. Compact preference
formalisms are not without their drawbacks. Observe that there are more explicit represen-
tation instances than there are compact ones for an order over n objects, so not all explicit
representations can be represented compactly. Moreover, many graph problems that can be
solved in polynomial time in an exponentially large graph turn out to be PSPACE-complete
in a graph that compactly represents the exponentially larger original graph [9, 42, 61].

General additive independence (GAI) value functions [8, 35, 44] assign numerical value
to the utility of each outcome to the subject as expected by the agent. In general such
functions are not compact, but GAI value functions leverage a property known as additive
independence to enable the utility of an outcome to be computed efficiently by summing
a series of separate utility functions, one for each feature. If the total added utility of the
first outcome is greater than that of the second, one can infer from the model that 0 > o’.
However, not all utility functions are additive. Moreover, as discussed in Section 1.1.1, it
is not always clear how to assign numerical values to human preferences.

Preferences can also be modeled as a constraint satisfaction program (CSP) through
methods that employ soft constraints. In Example 2 it was observed that a home automation
system would likely enforce hard constraints, such as that indoor temperature must not get
so low as to let pipes burst. Aside from such hard constraints, the system also takes into
account the preferences of the resident. Perhaps he prefers 70 °F rather than 65 °F indoors.
Such a preference can also be modeled as a constraint. In contrast to the requirement that
the temperature must not be allowed to drop below a certain threshold, however, the desire
for a comfortable room would be modeled as a soft constraint—something to be optimized
with a constraint solver along with other features that affect the resident’s comfort, but not

something the system must achieve under all circumstances or report failure. A number of

12

www.manaraa.com



soft constraint formalisms exist, such as fuzzy, weighted, and probabilistic constraints. A
more general method known as semiring-based soft constraints encompasses most of these
other approaches and has specifically been applied to model and work with preferences [13,
14, 90]. However, this method requires finding a particular semiring value for each variable
assignment in each constraint, again introducing the problem of quantifying preferences

that often can be expressed more naturally in a qualitative way.

1.2.3 Common Problems in Preference Handling

Certain problems are inherent in an application such as those described in our opening
examples. First, the system needs some way to obtain a model of the subject’s preferences.

The possibilities for learning this include:

¢ Direct construction. The subject or a human expert working closely with the sub-
ject explicitly constructs a preference model based on the subject’s introspection.
This approach is problematic for several reasons. It requires a significant amount of
knowledge about the mathematical model. Also, the subject may not have time for
this, and if an outside consultant is hired, the cost would likely be prohibitive except
for high-value domains. Moreover, repeated psychological studies have shown that

human beings cannot reliably introspect on our own preferences [3, 77, 78, 103].

e Active elicitation. An agent (computer system) poses a series of gueries to the
subject. A model is then inferred from the subject’s replies. An advantage of this ap-
proach is that a model of the subject’s preferences is available to the system from the
outset. A disadvantage is that the process of answering repeated queries can be te-
dious. Moreover, if this process is shortened or terminated early (e.g., by a frustrated

user), the resulting model may not adequately reflect the subject’s preferences.
e Passive learning. A third approach is to observe what a subject does over time. This

is the approach envisioned in Example 1, where we consider that a model of a chef’s

13

www.manaraa.com



preferences over foodservice items could be learned from customer order data. An
advantage of this approach is that it does not demand anything of the subject at the
outset; the user can begin using the system immediately. The disadvantage is that

weeks or months may be required before the system can learn a suitable model.

Hybrid approaches to learning are also possible. For example, a system could initialize the
preference model by posing only a few queries to the subject and then refine this model
over the succeeding months using the passive learning approach. In some settings, it may
be advisable to consider that a subject’s preferences may change over time. Such a model
would need some way of continually learning new information about the subject’s prefer-
ences, while simultaneously “forgetting” outdated information, particularly if it were found
to conflict with more recently observed preferences.

Once a model is available, algorithms are required to draw inferences from the model

about the subject’s preferences. Common problems of this sort include:

e Optimization. What is the (a) most (or least) preferred outcome?® Similarly, what

are the k-best (worst) outcomes?

e Reasoning. Given some pair of outcomes that the subject may not have considered

previously, which (if either) is the subject likely to prefer?

o Aggregation. If preference models are available for more than one subject, one be-
comes interested in whether the preferences can be aggregated to produce outcomes
for the group that meet some criteria of optimality (e.g., Pareto efficiency). As such,

preference aggregation is closely related to social choice topics such as voting.

3This assumes, of course, that optimal outcomes are defined with respect to the model, which turns out
to be the case with CP-nets.

14

www.manaraa.com



shelled Schley unshelled Schley

Pawnee > Schley . >.

Pawnee : shelled > unshelled 4 4
Schley : unshelled > shelled " ’
shelled Pawnee unshelled Pawnee
(a) Conditional preference network (b) Preference graph

Figure 1.5: CP-net and Induced Preference Graph

1.3 Conditional Preference Networks

We now turn to the preference formalism that will be our focus in the discussions that fol-
low, the conditional preference network (CP-net). First proposed by Boutilier et al. [16],
CP-nets exploit conditional ceteris paribus preference rules (1.1.4) to enable a compact
representation of the preference graph (1.2.1). We define CP-nets formally in Chapter 2,
but at this point it is helpful to introduce them with examples corresponding to the applica-
tions in Examples 1 and 2 at the beginning of the chapter.

The CP-net in Figure 1.5a models the preferences described in Section 1.1.4. Recall
that the chef prefers the Pawnee variety of pecans to the Schley. If the pecan does happen
to be a Pawnee, she prefers that it be delivered shelled; otherwise, she prefers the pecans
unshelled. The nodes in Figure 1.5a represent the features over which the subject holds
preferences. The directed edge from vARIETY to SHELLED indicates that the subject’s ceteris
paribus preference for whether the pecan is shelled or unshelled depends on the variety.
We refer to VARIETY in this case as the parent of sHELLED. In contrast, the preference over
VARIETY 1s unconditional, so that node has no parents. The boxes beside each node are
conditional preference tables (CPTs) specifying the ceteris paribus rules over each node

given the values of all combinations of values of the parent nodes.

15

www.manaraa.com



The CP-net in Figure 1.5a induces the preference graph shown in Figure 1.5b. Each
rule in the CP-net induces a non-empty set of edges in the preference graph. For example,
the rule

Schley : unshelled > shelled (1.1)

corresponds to the directed edge (shelled Schley, unshelled Schley) in the preference graph,
and the rule

Pawnee > Schley (1.2)

corresponds to the edges (shelled Schley, shelled Pawnee) and (unshelled Schley, unshelled
Pawnee).

The ceteris paribus rules, by their nature, specify preferences for outcomes that differ
in just one feature. The transitive closure of these rules sometimes allows us to compare
outcomes that differ in more than one feature. For example, suppose only two items are in
stock, unshelled Pawnee and shelled Schley. In that case, we anticipate that the pastry chef
will prefer the unshelled Pawnee: Equation 1.1 entails that shelled Schley is less preferred
than unshelled Schley, and Equation 1.2 entails that unshelled Schley is less preferred than

unshelled Pawnee. Thus, we have:

shelled Schley < unshelled Schley < unshelled Pawnee. (1.3)

Such a ranking is known as an improving flipping sequence and is the basis for reasoning
about the relationship between arbitrary outcomes with respect to a CP-net. Note that
every such improving flipping sequence corresponds to a path along directed edges in the
preference graph. In this case, the flipping sequence counts as a proof that the subject
prefers unshelled Pawnee to shelled Schley, and we say that the first outcome dominates the
other. Later, we will also be interested in the length of a shortest such sequence connecting
two outcomes. In this case we say that the ordered pair of outcomes (unshelled Pawnee,

shelled Schley) has a flipping length of 2.

16

www.manaraa.com



Now consider a slightly more complex CP-net corresponding to Example 2. Suppose
our automated home has windows with blinds that the system can open and close automat-
ically, as well as sensors that report weather conditions in realtime. Suppose also that the
subject prefers that the blinds be open during the day and closed at night, with certain ex-
ceptions. For example, he prefers the blinds always be open when it is snowing. He prefers
both snow and fair weather to rain. The subject’s preferences as described can be modeled

with the CP-net in Figure 1.6. In terms of this simple model, three features contribute to

fair > rain
Snow > rain

fair, day : open > closed
fair, night : closed > open
rain, day : closed ~ open
rain, night : closed > open
snow, day : open > closed
snow, night : open > closed

Figure 1.6: A CP-net with Indifference over Multivalued Domains

the subject’s happiness—weather, time of day, and the state of the blinds—with 12 pos-
sible outcomes in all (fair day with blinds closed, rainy night with blinds closed, etc.).
Such features are modeled as variables with discrete domains. For example, the variable
WEATHER has a multivalued domain consisting of fair, rain and snow, while the other two
variables are binary. The edges from WEeATHER and TiMmE to BLinDs indicate that the prefer-
ence over BLinps depends on these other two features. Note that the subject’s preference
over WEATHER is unconditional because it does not depend on any other factor. Moreover,
the CPT for TiME is empty, because we have no information on the subject’s preferences for
day versus night. In this particular example, we model lack of information as incompara-
bility. Finally, observe that on a rainy day, the resident of the smart home is equally happy

with.the blinds.open.or.closed, expressed here in the form of a rule specifying indifference.

17

www.manaraa.com



Again, care should be taken to distinguish incomparability from indifference. While we
are told that the subject is equally satisfied with open or closed blinds on a rainy day, we
should not assume, in the absence of additional information, that he is also equally happy
with day and night. He may well prefer one to the other. Moreover, indifference here is
transitive, while incomparability is not. Finally, it is worth noting that the preferences here

are modeled deterministically rather than as probability distributions.

1.4 CP-nets: Challenges to Adoption

Each method of modeling preferences—CP-nets, GAI functions, soft constraints, etc.—has
its strengths, weaknesses, and unique characteristics. The choice of a preference modeling
language for an application may be compared to an engineer’s choice of a programming
language or software application; various factors such as the specifics of the project and
the practitioner’s familiarity with the available tools may influence this decision.

There is much to like about CP-nets. They let us concisely model preferences over
factored domains with exponentially many conceivable alternatives. They capture visually
the if-then rules that many of us think we employ when we reason about such alternatives.
They are qualitative; that is, they only ask us to specify whether one thing is better than
another, without assigning a numeric weight as to precisely how much we prefer it. Finally,
the problem of determining the optimal (most preferred) outcome with respect to a CP-net
can be answered efficiently (in time linear in the number of features) if the graph is free of
cycles and CPTs are complete.

On the other hand, while many academic papers discuss CP-nets (over 800 to date,
according to Google Scholar) and many interesting applications have been proposed—
automated negotiation [7], interest-matching in social networks [102], cybersecurity [15],
and as aggregation primitives for making group decisions [63, 74, 104], among others—
we are not yet aware of their use in real-world applications. There are several reasons for

this. First, as we discuss in Section 3.4, determining dominance—whether one arbitrary

18

www.manaraa.com



outcome 1s better than another with respect to a CP-net—is known to be computationally
hard in many cases. This is significant, since one doubts that, say, a decision support sys-
tem implementation would be particularly useful if it sometimes required several days to
determine whether a customer preferred one item that was in stock over another! Second,
the study of how to learn CP-nets is still in its relative infancy. Some algorithms have been
proposed. However, as we discuss in Section 3.5, the proposals to date either make unreal-
istic assumptions or rely on methods that do not scale to networks of realistic size. Third,
while academic papers do sometimes evaluate their proposed learning or reasoning algo-
rithms experimentally, the methods for these evaluations turn out to be problematic. As we
discuss in Section 3.6, human subjects data for CP-nets at present is non-existent, and the
situation with preference data over multi-feature domains is hardly any better. Experiments
using synthetic datasets have been equally problematic, because they have relied on naive
eneration methods that suffer from statistical bias.

This thesis addresses several of these limitations in an effort to make CP-nets more use-
ful and to further their adoption in engineering applications. Chapter 2 consists of formal
definitions. In Chapter 3, I discuss the work of previous researchers to provide an overview
of the state of the art for CP-nets research. In Chapter 4, I show how to encode, count,
and generate CP-nets uniformly at random. Because the computational time for determin-
ing dominance depends on flipping length, in Chapter 5 I use the generation method to
study the expected flipping length of a dominance testing problem given certain parame-
ters that are easy to compute and show how to use this expectation to limit search depth in
certain cases. In Chapter 6, I show how to use local search to learn tree-shaped CP-nets
from choice data. A concluding chapter summarizes contributions and some interesting

possibilities for future research.

Copyright © Thomas E. Allen, 2016.

19

www.manaraa.com



Chapter 2 Definitions

Preferences were introduced informally in Chapter 1. The present chapter is a more formal
introduction of the terms, notation, and concepts used in the research that is discussed in
subsequent chapters. Section 2.1 reviews ordered sets. Section 2.2 reviews graph theo-
retic concepts and classes of digraphs commonly encountered in working with CP-nets.
Section 2.3 introduces notation for outcomes over multi-featured domains. Section 2.4
formalizes preferences on factored outcomes, CP-nets, and related concepts such as dom-
inance testing and flipping lengths. Section 2.5 concludes with tables of commonly used

acronyms and notation.

2.1 Ordered Sets

The reader is presumed to be familiar with elementary set, order, and graph theoretic con-
cepts. Those less familiar with such topics are referred to a textbook, such as that of Rosen
[88]. Nonetheless, since terminology and notation tend to differ among communities,' a
brief review is in order.

Preferences as considered in this work involve ordered finite sets. A linear order here
refers to a strict total order on a set, i.e., an irreflexive, antisymmetric, transitive, total
binary relation. Thus, if » is a linear order on S, then, for alla € S, b € S, just one of
the following is true: a » b, b » a, or a = b. The expression a » b is read, “a is ordered
before b,” and in this case a = b is read, “a is the same as b.” Note that the = operator here
indicates that a and b refer to the same element; it should not be confused with ~, discussed
below. A set thus ordered is known as a ranking. We denote the set of all such rankings

(the permutations or symmetric group) of a finite set S as ().

!“You keep using that word. I do not think it means what you think it means.” —Inigo Montoya

20

www.manaraa.com



A partial order differs from a linear order in that the relation is not total; that is, some
elements in the set may be incomparable. Thus, if > is a partial order on §, then, for all
a,b € S, just one of the following is true: a » b, b » a, a = b, or a || b. The expression
a || b is read, “a cannot be compared to b.” (Other authors sometimes use > or X to denote
incomparability.) A set thus ordered is a partially ordered set or poset. Note that every
ranking is also a poset. If a poset is not a ranking, the ordering is said to be incomplete.

A linear order » on § is said to be a linear extension or linearization of a partial order
>on § if and only if (a,b) € > = (a,b) e » foralla € S, b € §. That is, if a is
ordered before b in the poset, then a must also be ordered before b in the linear extension.
However, if a || b in the poset, then it must either be the case that a » b or b » a in the linear
extension. For example, let S = {a, b, c} and let > = {(a, ¢), (b, c)} be a partial order on S’;
i.e.,aw» c,bw» c,and a || b. Then (the only) two linear extensions of > are a » b » ¢ and
b » a » c. A ranking that extends a poset in this manner is also said to be compatible with
that poset. Note that an infix ordering operator such as » can be chained, e.g., a » b » c,
only for rankings; » is not chained for an order that may be incomplete.

A preorder is a reflexive, transitive binary relation. Informally, a preordered set differs
from a poset in that “ties” are allowed between pairs of distinct elements. That is, if > is a
preorder on S, then, for all a,b € §, just one of the following is true: a > b, b > a,a ~ b,
or a || b, where ~ is read, “a is ordered equally with b.” For a preorder,a = b = a ~ b,
but the converse does not hold. Note that every poset is also a preordered set, and every
preordered set is also consistent, i.e., closed under transitivity. If a binary relation on a set

1s intransitive, it is said to be inconsistent.

2.2 Graphs

A directed graph (digraph) is a pair G = (V, E) in which V is a set of nodes (also known
as vertices) and E is a set of directed edges (or arcs). When no confusion can result, we

may drop the qualifier and refer to a directed edge simply as an edge. Each edge (u,v) € E

21

www.manaraa.com



© Oz © ©
B O0—® O—® O—/—~0

(a) Cycle (b) Loop (c)Edge Ato B (d)Edge Bto A

Figure 2.1: Labeled Digraphs

consists of an ordered pair of nodes, u € V, v € V. While digraphs may have cycles,
such as that in Figure 2.1a, the graphs in this work are free of loops such as that shown
in Figure 2.1b; thus, we assume u # v for all (u,v) € E. Throughout this work, we also
assume all graphs are labeled; that is, the digraph of Figure 2.1c is distinguished from
that of Figure 2.1d. An undirected graph differs from a digraph in that E is composed of
unordered pairs of nodes {u, v}. With the exception of Chapter 6 or as otherwise noted, the
graphs in this work are assumed to be directed.

Let G = (V,E) be a digraph and v € V an arbitrary node in G. If there exists a node
u such that (u,v) € E, then u is said to be a parent of v. Formally, the parents of v are
defined as: Pa(v) = {u : (u,v) € E}. If there exists a node u such that (v,u) € E, then u is
said to be a child of v. Formally, the children of v are defined as: Ch(v) = {u : (v,u) € E}.
The indegree of a node v is its number of parents |[Pa (v)| and the outdegree is its number of
children |Ch (v)|. A set of digraphs G on V is said to have bounded indegree c if no node in
any digraph in the set has more than c parents; i.e., |[Pa(v)| < c forallv e V forall G € G.

A path from s to ¢ is a sequence of edges, ((ug, u1), (u, uz), ..., (Ur_1,ur)), where ug = s
and u, = t, such that (i, ugy) € E and 0 < k < £.2 The length ¢ of a path is the number of
its edges. If p is a path, |p| denotes path length. We denote by Pathg the set of all paths in
G and by Pathg(s, t) those from s to ¢. The expressions s ~» ¢ (“there exists a path from s
to £’) and ¢ «~ s (“t is reachable from s) are true if and only if there exists a path from s
to ¢. If no path exists, we may write £ = co. A digraph is said to contain a cycle if and only

if there exists u € V such that u ~» u.

2Note that, for technical reasons, paths of length 0 are excluded from this definition.

22

www.manaraa.com



In general, more than one path may connect a pair of nodes. Indeed, if s and # participate
inacycle (s » t A t ~ s), then there are infinitely many such paths. Thus, one is often
interested in the shortest path, defined as:

minpath;(s,#) = argmin {p : p € Pathg(s, 1)} .
pl

Definition 3 (Diameter). The diameter of a digraph is the length of the longest shortest

path between any pair of nodes,
Diam(G) = max |minpathG(s, t)| .
S,l €

Definition 4 (APL). The average path length [27] of a digraph with n nodes is

APL(G) = 1_ 1)2 d(s, 1),

l’l(l’l s*t
where n = |V| and each d(s,t) = |minpath;(s, )|, the shortest path between the pair of

nodes s and t, provided such a path exists; otherwise, d(s,t) = 0.

In this work the density of a graph G is always defined with respect to a particular set
of graphs G. Specifically, density(G) is the ratio of the number of edges in graph G to the
maximum number of edges of any graph in the set §. The resulting value is thus a rational

number between 0 and 1 inclusive.

Definition 5 (Maximally and almost maximally dense graphs). If density(G) = 1, then G
is said to be maximally dense with respect to the set. A graph G’ obtained by removing just

one edge from a maximally dense graph is said to be almost maximally dense.

A directed acyclic graph (DAG) is a digraph that does not contain a cycle. That is,
Pathg(v,v) = 0 for all v € V. In Figure 2.1, note that only the digraphs shown in 2.1c and
2.1d are DAGs. The digraphs shown in Figures 2.1a and 2.1b are not DAGs since they
contain respective paths (A, B, A) and (C, C).

A directed tree (or arborescence [45]) is a digraph such that, for just one node s, called

the root,and.every.other node ¢, s, € V, s # t, there exists just one path from s to ¢. Note

23

www.manaraa.com



that every directed tree is also a DAG, but the converse does not hold. It can be shown that
every node of a directed tree has just one parent, with the exception of the root. A directed
forest (or tree-shaped graph) is a digraph in which each node has at most one parent; thus,
a directed tree is also a directed forest. A chain is a directed tree with just one leaf; i.e., the
edges impose a ranking on the nodes.

A polytree is a digraph such that the underlying undirected graph does not contain a
cycle [16, 28, 82]. Formally, consider that for each directed graph G = (V, E) one can
construct an undirected graph G’ = (V, E’), such that (u,v) € E = {u,v} € E’. Then, if
G’ 1s acyclic, G 1s a polytree. Note that every DAG is a polytree, but the converse does not
hold. Further note that the graph need not be connected, and that a node may have more
than 1 parent.

A directed path singly connected graph (DPSCGQG) is a digraph with “at most one di-
rected path between any pair of nodes” [16]. That is, [Paths (s, )| < 1 for all 5,7 € V. Note
that while every polytree is a DPSC graph, the converse does not hold. A max-0-connected
graph has at most ¢ directed paths between any pair of nodes. That is, |[Paths (s,7)] < &
for all 5,7 € V. Note that a DPSC graph is also max-d-connected (with 6 = 1), and every

max-o-connected graph is also a DAG.

O 0o 0o O O 0O

d @ 6~ W 9’ ‘9 9’9 9'9
- O 6O 6 © 60«k©L G
Chain Directed tree Polytree DPSCG DAG Digraph

Figure 2.2: Common Classes of Digraphs (n = 6)

Finally, a digraph is an antichain if it has no directed edges (E = 0). Figure 2.2 il-
lustrates some of the common classes of graphs encountered in discussing CP-nets. The

relationship between these classes of graphs can be summarized thus:

chains C directed trees C polytrees € DPSCGs € DAGs C digraphs.

24

www.manaraa.com



2.3 Outcomes

Recall from Section 1.1.4 that in this work we are interested in multi-featured preferences.
Indeed, in many settings, such as the smart home of Example 2, the object actually results
from specifying a value for each feature (e.g., whether the window blinds are open or
closed). When an object is factored into features, it is known as an outcome.

Let O be a finite set of outcomes characterized by the values of several features rep-
resented by variables V = {Xi,..., X,} with associated domains Dom(X;) = {x’i, e, xili},
d; = |Dom (X;)|, such that © = Dom(X;) X - - - Xx Dom(X,,). The domain of a binary variable
has just two values; if d; > 2, then is X; is multivalued. The variables are homogeneous
if all domains are of the same size d = d; = --- = d,; otherwise they are heterogeneous.
For simplicity, variables may also be denoted with different uppercase letters, with their
respective values in lowercase (e.g., A = {a;, ax}, B = {b1, b,, b3}), or in specific examples
with variables in smaLLcAPs and values in italics: e.g., FrRuiT = {apple, banana, tomato}.
Moreover, if a variable X; is binary, its values may be denoted Dom(X;) = {x;, X;}.

The values that a variable can take may be constrained to a proper subset of its domain.
When X; is constrained to just one value x;., then it is said to be assigned that value, in
which case one may write, X; = x‘] A set of variables U C V can similarly be constrained
and assigned. An assignment to all variables U = V (a full instantiation) designates a
single outcome o € . The set of assignments to U C V is denoted by Asst(U), where
Asst(U) = Dom(Xy,) X --- x Dom(X},), Xj, €e U,m = |U|, 1 <k < m.

The expression o[X;] denotes the projection of an outcome o € O onto a variable X;.
We also generalize the use of the postfix [-] operator so that if Q is an outcome or set
of outcomes and W is a variable or set of variables, then Q[W] denotes the projection of
outcomes Q onto variables W. Similarly, the expression o[—X;] is the projection of o onto
V \ {X;}, and in general Q[—-W] is the projection of Q onto V \ Q. Moreover, when each
variable is indexed with a natural number i, i.e., when V = {X;, ..., X,}, then o[i], o[-i],

Qli] and Q[—i] are understood to mean o[X;], o[—X;], O[X;], and Q[—X;] respectively.

25

www.manaraa.com



The expression ux;; denotes the combination of u € Asst(U) and x;'{ € Dom(X;), where
X; ¢ U. In general, if w and u are assignments to disjoint sets W and U, w € Asst(W),

u € Asst(U), WN U = 0, then wu denotes the combination of w and u.

Example 6. Let V = {A, B,C}, Dom(A) = {a, a», a3}, Dom(B) = {by, b,}, and Dom(C) =
{c1, c2}. Then Asst({B, C}) = {bicy,bica, bacy, bycr}, asbici[A] = a3, asbyci[{B,C}] = bicy,

and Cl3b1C1 [—C] = a3b1.

Definition 7 (Hamming distance). The Hamming distance of a pair of outcomes HD(o, 0"),

0 € O, o €O, is the number of variables in the outcomes for which the values differ, i.e.,
HD(o0,0") = { X; : o[X;] # o'[X;]}]. (2.1)

For example, HD(a3b,cy,a1b;c;) = 1 and HD(a,b,cy,a,b,c;) = 3. One can observe that
HD(o0,0’) = HD(0’, 0) for all 0,0’ € O and that HD(0, 0’) = 0 if and only if 0 = o’. Finally,
0 < HD(o,0") < n, where n = |V|.

We denote by O, the set of all outcomes on n binary features and by O, ; all outcomes
on n d-ary features. We denote by O? and (’)5’ , all ordered pairs of outcomes on n binary
and d-ary features. (95| , and Oi 41 are the same sets restricted to pairs with Hamming

distance &, 0 < h < n; for example, Oy )2 = {(0,0") : HD(0,0") =2, 0 € O4, 0’ € O4}.

2.4 Preferences and CP-nets

A preference relation takes the form of a preorder if it can model outcomes over which
a subject may be indifferent. In this work, however, strict (though not necessarily total)

preferences are assumed. We thus model preferences as a partial order.

Definition 8 (Preference). A strict preference relation >gs is a partial order on a set of

outcomes O by a subject S.

When no confusion would result, the subscript will be omitted and > used as an infix

operator,where.0.>.0' indicates that the subject strictly prefers o to o’. Equivalently one

26

www.manaraa.com



may write o’ < o, because 0 > 0’ &= 0’ < o. In a preference relation, as for partial
orders in general, the infix || operator denotes incomparability. Recall from Section 2.1
that since preferences are posets, just one of the following is true: 0 > 0’, 0 < 0’, 0 = 0',
or o || o’. We assume O is finite and can be factored as described in Section 2.3. Note
that for d-ary variables |O] = d"; that is, exponential space is required to store > (see
1.2.1). However, because O is factored, a conditional preference network (CP-net) [16]

can compactly model >.

Definition 9 (CP-net). A conditional preference network is a digraph on V = {Xy, ..., X,}
in which each node is labeled with a conditional preference table. An edge (X;, X;) indicates

that the preferred value of X; in > depends on the value of its parent variable X,

Definition 10 (CPT). A conditional preference table CPT(X;) consists of conditional ce-
teris paribus preference rules (CPRs) u : >' specifying a linear order on Dom(X;) for

assignments to the parents of X; in the dependency graph, u € Asst(Pa(X;)).

Formally, CPT(X;) implements a function f : Asst(Pa(X;)) — S(Dom(X;)). If f(u) is
defined for all u € Asst(Pa(X;)), i.e., a preference over X; is specified for every assignment,
the CPT is said to be complete; otherwise it is incomplete. Unless otherwise specified, we
assume CPTs are complete. The expression CPT(X;|X), = xZ) denotes all rules of CPT(X))
of the form ux{ : >’ where x}' € Dom(X,), X, € Pa(X,), u € Asst(Pa(X;) \ {X,}). Figure 2.3

illustrates a simple chain-shaped, binary-valued CP-net.

Weather

Activity

fair : cycling > table tennis | |cycling  : emily > henry

rain : table tennis > cycling table tennis : henry > emily

Figure 2.3: A Simple CP-net N

27

www.manaraa.com



The size of a CPT is defined as the number of rules it contains, and the size of the
CP-net is the sum of the sizes of its CPTs. If domains are d-ary and CPTs are complete,
a node with m parents has d" CPRs. Thus, the size of the description is exponential in
the maximum indegree of G. To provide a compact model of > (see 1.2.2), indegree is
assumed to be bounded by a small constant [16], i.e., |Pa(X;)| < c¢ for all X;. We assume
that domain size is similarly bounded.

The term dependency graph (or graph) denotes the digraph G of a CP-net apart from
its CPTs (tables). A chain, tree-shaped, or polytree CP-net is one for which the graph
takes the respective shape of a chain, directed forest, or polytree (Section 2.2). It is often
assumed that the graph of a CP-net is acyclic (i.e., a DAG); if the CP-net may have a cycle,
this is usually qualified, e.g., generally cyclic CP-nets.

As discussed in Section 1.2.1, a CP-net induces an exponentially larger graph known

as the preference graph (or outcome graph), which we now define formally:

Definition 11 (Preference graph). The induced preference graph (PG) of a CP-net N is a
digraph H = (O,C) in which (0’,0) € C if and only if there exists a CPR u : >' in the
CPT of a node X; in N, such that (o[X;],0'[X;]) € >, o[X;] # 0'[Xi], o[-Xi] = o'[-X;],
u € Asst(Pa(X;)), u = o[Pa(X;)] = o'[Pa(X;)],0 € O, 0’ € O, and X; € V. A directed edge

Jrom o’ to o thus indicates that HD(0,0") = 1 and that o’ < o.

If variables are binary, |O] = 2" and H takes the geometric shape of a directed hyper-
cube, sometimes known as a Hamming cube [31]. Figure 2.4 depicts the induced preference
graph for the CP-net of Figure 2.3. (Note that FCH, for example, denotes the outcome (fair,
cycling, henry).) The rule fair > rain in the CPT of WEATHER in N induces the edges along
“dimension” WEATHER in H: (RCH, FCH), (RTH, FTH), (RCE, FCE), and (RTE, FTE).
This must be the case, since the subject always prefers fair weather to rain, regardless of
the activity or companion. Similarly, the rule table tennis : henry > emily in CPT(friend)
induces the directed edges, (FTE, FTH) and (RTE, RTH). Whatever the WEATHER, the sub-

jectprefers henryto.emily as the FRIEND for AcTiviTy fable tennis.

28

www.manaraa.com



RCH RTH
)

FCH

ﬁ gTE

Figure 2.4: Induced Preference Graph H of CP-net N (see Figure 2.3)

@

T

The CPRs allow direct comparison between outcomes that differ in the value of just
one variable. Comparing outcomes that differ in more than one variable requires finding
a path in the preference graph from the less to the more preferred outcome. For example,
the outcomes RCE and FCH differ in two variables; thus no single rule specifies whether
the subject would prefer a rainy day cycling with Emily or a fair day cycling with Henry.

However, note that a path connects the two outcomes:
RCE < RTE < RTH < FTH < FCH. (2.2)

Such a path is a known as an improving flipping sequence (FS), since traversing an edge
of the preference graph flips the value of a variable such that the subject is more satisfied
with the resulting outcome.? Paths such as RCE ~» FCH result from the transitive closure
of the ceteris paribus rules of the CP-net. The existence of such a path counts as a proof
that FCH > RCE. Note that multiple paths may connect a pair of outcomes. For example,
FCE > RCE since RCE < RTE < FTE < FCE; however, there is also a shorter, more direct

path, RCE < FCE.

3While the term flip is perhaps better suited to binary domains (e.g., flip a coin), it is also used of
multivalued variables both in everyday speech (e.g., flip a die) and in the preference handling literature. Note
that the semantics of the rule u :>' allow us to flip directly to any more preferred value in Dom(X;) given
u. In particular, if CPT(B) contains the rule a; : by > b, > b3, one can flip directly from o’[AB] = a;b3 to
o[AB].=-a;b-witheutfirst-having to visit o’ [AB] = a,b;.

29

www.manaraa.com



Definition 12 (Flipping sequence). A flipping sequence is a path in the induced preference

graph of a CP-net.

In general, if there exists an improving flipping sequence from o’ to o, then we write
N = 0 > 0’ and say the CP-net entails the dominance of o over o’ in the induced order. If
no path exists in either direction, i.e., if N E o # o’ and N | o’ # o, then we can reason
that the two outcomes are incomparable with respect to the CP-net; i.e., N | o || o’. The

search for such a path is known as dominance testing (DT).

Definition 13 (DT problem). A dominance testing problem is a decision problem for which
the input is a triple (N, 0, 0") consisting of a CP-net N on 'V = {X,, ..., X,} and outcomes o
and o', 0 € O, 0’ € O, O = Dom(X)) X --- X Dom(X,,). The answer is in the affirmative if

and only if N = o > 0'.

We denote by DT(N, O) the set of all DT problem instances (N, 0, 0’), such that N € N,
o € O,and o' € O, and by DT(N, O | ) the set of instances satisfying one or more
conditions #. For example, DT(N, © HD(o0,0) = h, APL(G) = 0.5) denotes the set of DT
problem instances (N, 0,0’), such that N € N, 0 € O, o’ € O, for which the Hamming

distance between the outcomes is / and the average path length of the dependency graph is

0.5.

Definition 14 (Flipping length). The flipping length is the length of the shortest path be-

tween a pair of outcomes in the induced preference graph H of a CP-net N,
FL(N, 0, 0) = minpath,(0’, 0). 2.3)
If no such path (flipping sequence) exists, then the flipping length is undefined.

When the flipping sequence is undefined, we may write FL(N, o', 0) = oo.

30

www.manaraa.com



In Chapter 5 we will be interested in the longest flipping length, which we call the
diameter of the preference graph Diam(H) (see Definition 3).* In the example shown in
Figure 2.4, the longest flipping sequence is the one given in Equation 2.2; consequently,
Diam(H) = 4. Note that the outcomes (RCE, FCH) that produce this diameter have Ham-
ming distance 2. We will also be interested in the longest flipping length that connects any

pair of outcomes with a given Hamming distance h.

Definition 15 (h-Diameter). The h-diameter of the induced preference graph H is
Diam;,(H) = max |minpathH(0, 0’)| , 2.4)
such that HD(0,0’) = h, 0 € O, o’ € O.

One can confirm from Figure 2.4 that while Diam(H) = Diam,(H) = 4, the shortest path

between any two outcomes that differ in all three variables is Diam3;(H) = 3.

Definition 16 (Mean flipping length). If Z C DT(N, O) is a non-empty set of DT problem
instances, then MFL(Z) is the mean flipping length for Z,

MFL(Z) = é Z FL(N, 0, 0") (2.5)

IeT
such that o # o’ and FL(o0, 0") is defined, where N, o and o’ are the three elements of tuple

I=(N,o0,0).

Similarly, MFL(Z | ) denotes the mean flipping length for instances Z that satisfy a set of
conditions 6. For example, MFL(Z | HD(o, 0") = 2) denotes the mean flipping length for
all I € Z with Hamming distance 2.

We denote by N, the set of all CP-nets on n binary features, and by N, 4 the set of CP-
nets on n d-ary features. N, . and N, . indicate the same sets restricted to dependency

graphs with indegree at most c.

4Confusingly, this longest flipping length is sometimes called the diameter of the CP-net [61]. However,
that usage lends itself to confusion between the diameter of the induced preference graph and the diameter
of the dependency graph, Diam(G), which in this case of course is 2.

31

www.manaraa.com



black : black > tan
tan : tan > black

black : black > tan
tan : tan > black

(a) Consistent CP-net N

black : black > tan
tan : tan > black

black : tan > black
tan : black > tan

(¢) Inconsistent CP-net N’

(black, tan) (tan, tan)

(black, black) (tan, black)
(b) Consistent PG H
(black, tan) (tan, tan)

—O0

(black, black) (tan, black)
(d) Inconsistent PG H’

Figure 2.5: Cyclic CP-nets and Induced Preference Graphs

Finally, one can observe that if H (not to be confused with G) contains a cycle, the in-

duced order on the outcomes is inconsistent. Consider the CP-nets in Figure 2.5. CP-net N

in Figure 2.5a expresses a preference for coordinating the color of leathers. (The customary

rule of fashion is that a black belt should be matched with black shoes, tan with tan, and so

on.) The induced preference graph expresses this convention as one would expect. If the

subject discovers that he is wearing a black belt and tan shoes, he can improve by switching

either shoes or belts. Having made the switch, the outcome is then one of the two incompa-

rable optima. A CP-net could just as easily enforce anti-coordination by inverting the order

in all four conditional preference rules. However, in CP-net N’ in Figure 2.5c, observe that

only the CPT for shoes is inverted. The unfortunate result, depicted in Figure 2.5d, is an

www.manaraa.com



Table 2.1: Commonly Used Acronyms

Acronym Meaning Section
APL average path length 2.2
CP-net conditional preference network 2.4
CPR conditional preference rule 24
CPT conditional preference table 2.4
DAG directed acyclic graph (labeled) 2.2

DPSCG  directed path singly connected graph 2.2

DT dominance testing 2.4
FS flipping sequence (improving) 24
HD Hamming distance 2.3
PG Preference graph 2.4

irrational subject who is forever changing shoes and belts in endless hope of improvement.
Unfortunately, if the graph G of a CP-net has cycles, finding optima and proving consis-
tency are known to be PSPACE-complete [42]. On the other hand, when G is acyclic, CPTs
are complete, and indifference is disallowed—assumptions that we will adopt throughout
most of this work—then the optimum outcome is unique, computationally easy to find, and

the resulting order on O is guaranteed to be consistent [16].

2.5 Commonly Used Notation and Abbreviations

The chapter concludes with references for the reader. Table 2.1 provides the meaning of
common acronyms. Table 2.2 summarizes notation commonly used throughout this work.
The Section column specifies the chapter, section, or subsection where the operator or term

is defined or discussed, if applicable.

33

www.manaraa.com



Table 2.2: Commonly Used Notation

Symbol Most Likely Semantics Section(s)
> is at least as good as; weak preference relation 1.1;2.4
> is better than, preferred to; strict preference relation 1.1;2.4
>i linear order on the domain of X; 2.4

| is incomparable to; incomparability 1.1.1; 2.1
~ is ordered equally with; indifference 1.1.1; 2.1
- set complement (e.g., U =V \ U); Boolean negation (x V X)

\ set difference

X set multiplication, i.e., Cartesian product

E models; preferentially entails 2.4

ik Boolean action variable 5.6.2

€ probability of noise for every CPR; other small quantity 5.5

0 set of conditions or constraints 24

& Boolean clause 5.6.2
¢da(m) number of d-ary functions F'; with m inputs 4.2
Xa(m) number of degenerate d-ary functions F; with m inputs 4.2
Wa(m) number of non-degenerate d-ary functions F; with m inputs 4.2

w Boolean CNF formula 5.6.2

A dagcode, a tuple that encodes a DAG 43

A; an element of dagcode 4.3

A partial dagcode A 4.3

e number of DAGs parameterized by n and ¢ 43

Aned number of CP-nets parameterized by n, ¢, and d 4.4
Asst(+) set of all assignments to variables 2.3

Continued on the following page

34

www.manaraa.com



Table 2.2: Commonly Used Notation (continued)

Symbol Most Likely Semantics Section(s)
B all vectors consisting of n bits 6.2

B vector of n bits {0, 1} encoding the CPTs of CP-net in N\, 6.2

C edges of PG corresponding to ceteris paribus rules 2.4

c bound on the indegree of any node in a graph 2.2

d domain size (when homogeneous) 2.3

d; size of domain of variable X;; a member of Dom(D) 2.3
Diam(-) diameter of graph, i.e., longest path between any two nodes 2.3
Diam,(H) h-diameter of a preference graph H 2.4
Dom(-) domain of a variable 2.3
DTN, O) set of all DT problems (N, 0,0"), N € N, 0,0 € O 2.4;5.1
DTN, O |6) setof all DT problems (N, o, 0’) satisfying conditions 6 2.4;5.1
& set of pairwise outcome comparison data 6.1

E set of edges in a graph 2.2

E, comparison (o,, 0)) in € such that o, > o] 6.1

F cpt-code; tuple of function vectors F; 4.2

F; function vector corresponding to a CPT 4.4

Fj partial cpt-code 4.3

FL(N,o0,0")  flipping length; i.e., length of a shortest flipping sequence 2.4

G directed graph, esp. dependency graph of a CP-net 2.2
H preference graph (a Hamming cube if binary) 1.2.1;24
h index, esp. of a parent node; Hamming distance 2.4
HD(, ) Hamming distance; i.e., number of variables that differ 2.3
z set of DT instances 2.4

Continued on the following page

35

www.manaraa.com



Table 2.2: Commonly Used Notation (continued)

Symbol Most Likely Semantics Section(s)
1 DT instance (N, 0, 0") 2.4

i index, esp. of a variable or node representing a feature 2.3

Jj index, e.g., of a child node, encoding, etc. 2.3:4.3
k bound on flipping length for DLDT; index 5.5

L square matrix consisting of all flipping lengths 5.2

L, all Priifer codes with n — 1 integers ranging from 1 ton+1 6.2

L average path length; other length; Priifer code 5.2;6.2
€ index; length of a sequence, data set, or path 2.2;6.1
M adjacency matrix of a graph 5.2

m number of parents of a node; number of inputs to a function 2.4
MFL(Z) mean flipping length of a set of DT instances 24;5.1

MFL(Z | 6) mean flipping length of DT instances satisfying conditions 6 2.4; 5.1

N a set of CP-nets 2.4
N a particular CP-net 2.4
n number of features, variables, nodes 2.3
N, binary acyclic CP-nets with n nodes 5.1
Nopa d-ary acyclic CP-nets with n nodes 5.1
Noje binary acyclic CP-nets with n nodes and indegree bound ¢ 5.1
Nouale d-ary acyclic CP-nets with n nodes and indegree bound ¢ 5.1
N tree-shaped CP-nets on n binary nodes 6.2
(@) set of conceivable outcomes 2.3
O, set of outcomes over n binary features 2.3
Oha set of outcomes over n d-ary features 2.3

Continued on the following page

36

www.manaraa.com



Table 2.2: Commonly Used Notation (continued)

Symbol Most Likely Semantics Section(s)
0? all pairs of outcomes over n binary features 2.3

Oﬁl N all pairs of outcomes over n binary features with HD A 2.3

(9,21’ din all pairs of outcomes over n d-ary features with HD & 2.3

Pa(-) parents of a node 2.2

S() symmetric group; set of all rankings, permutations 2.2

S, T,U various sets

S the subject, preference holder 1.1;2.4
T, set of all treecodes L,, X B, 6.2

t index of items in a sequence; timestep in SATplan 5.6.2; 6.1
u node in a graph; utility function; assignment to parents 1.1.1; 2.2
)% set of features, variables, nodes 2.2:2.3

v node in a graph 2.2

X; a particular feature, variable, node 2.3

2t Boolean state variable 5.6.2

Copyright © Thomas E. Allen, 2016.

37

www.manharaa.com



Chapter 3 Related Work

This chapter provides an overview of the present state of the research involving CP-nets.
Because most of that research applies various restrictions to the formalism, Section 3.1
summarizes restrictions that can be applied to models, such as limiting the shape of the
network, the size of domains, etc. Section 3.2 discusses the problem of finding optimal
outcomes given a CP-net and also that of finding the k-best outcomes. Section 3.3 consid-
ers the problem of checking whether a CP-net is consistent. Section 3.4 discusses problems
related to reasoning with CP-nets, such as dominance testing, ordering queries, and heuris-
tic methods, as well as the complexity of the reasoning problems. Section 3.5 considers the
problem of learning CP-nets from outcome comparison data or elicited queries and what is
known about the complexity of the respective problems. Section 3.6 discusses experiments
with CP-nets, including efforts to generate CP-nets randomly, experimental validation of
algorithms, and available datasets. Section 3.7 concludes the chapter with a discussion of

some proposed extensions to the CP-net formalism.

3.1 General and Restricted CP-net Models

CP-nets have already been discussed along with examples in Sections 1.3 and 2.4. The
CP-net formalism was originally proposed by Craig Boutilier along with coauthors Ronen
I. Brafman, Carmel Domshlak, Holger H. Hoos, and David Poole, initially in conference
proceedings (1999) [17] and later extended for publication in the Journal of Artificial Intel-
ligence Research (2004) [16]. In their most general form, without extensions such as those
discussed in Section 3.7, CP-nets are allowed to have cycles in the dependency graph, with
only two constraints on the geometry: loops are disallowed, and a small constant bound on
indegree is assumed. Moreover, the features that characterize the outcome space, so long

as they are discrete, can be multivalued, CPTs can be partially specified (i.e., incomplete),

38

www.manaraa.com



and CPRs can express a weak total order over the domain of the local variable. While such
general models can represent a broader range of problems, reasoning with such models
may be intractable and there is no guarantee that the resulting order on outcomes will be
consistent.

Almost always, however, one or more restrictions are applied to the set of possible
CP-net models, either as a requirement for algorithms or as an aid in proving theoretical
results. Restrictions can be applied to the dependency graph, domains, CPTs, or CPRs.
Recall from Sections 2.2 and 2.4 that the dependency graph of a CP-net can be restricted
to a subclass of digraphs, such as DAGs, polytrees, etc. Table 3.1 lists some of the more
common restrictions to the structure of the dependency graph. By far the most common
of these is to exclude cycles; in fact, unless qualified (e.g., generally cyclic CP-nets), one
can usually assume that the dependency graph is a DAG. Recall from Section 2.4 that,
regardless of the type of graph, a bound on indegree is always assumed for CP-nets to
ensure a compact model.

Similar restrictions can be applied to the variable domains, such as a bound on the
cardinality of the largest domain or on the number of different cardinalities when domains
are heterogeneous. A rather common restriction is that all variables must be binary [29, 61,
65, 104]. Another common restriction [16] is that CPTs must be complete, i.e., each CPT
is fully specified with a linear order over the local variable for every assignment to parents.
Algorithms for learning are an interesting exception in which it is common to output a
CP-net that is likely to be incomplete [29, 48, 58]. Finally, almost all researchers disallow

indifference, restricting attention to CP-nets that can model only strict preferences.

3.2 Finding Most Preferred Outcomes

A common problem in working with preferences is to find the (or in some cases, such as
Figure 2.5b, an) outcome that the subject most prefers. For other compact formalisms (see

Section 1.2.2), optimization problems of this type are known to be hard [32, 71]. However,

39

www.manaraa.com



Table 3.1: CP-nets Characterized by Dependency Graph

Dependency Graph Resulting Class of CP-net References
Chain Chain CP-net [16]
Antichain Separable CP-net (SCP-net) [66]
Directed forest Tree (or Tree-structured) CP-net [11, 16, 59]
Polytree Polytree CP-net [16]
DPSCG Directed path singly connected CP-net [16]
Max-6-connected Max-6-connected CP-net [16]
DAG Acyclic CP-net [16]
Digraph CP-net (or generally cyclic CP-net) [16,42,61]

Boutilier et al. [16] proved that the problem of outcome optimization is easy in acyclic,
complete CP-nets. In such cases the most preferred outcome is unique and can be found in
linear time in the number of nodes using a forward sweep algorithm that they describe.
Brafman et al. [20] proved that the related problem of finding the k-best outcomes in an
acyclic CP-net (presumably with complete CPTs) can be computed in polynomial time in
the number of variables, assuming the solutions can be linearized in a particular way, which
they call a contextual lexicographical linearization. 1If CPTs are incomplete, however, the
complexity of finding the most preferred and k-best outcomes is believed to be an open

problem [16].

3.3 Checking for Consistency

As noted in Section 2.4, CP-nets can induce an intransitive order on outcomes in certain
cases. In particular, as noted in Section 2.4, inconsistency can sometimes arise if the de-
pendency graph contains a cycle (see Figure 2.5). Domshlak and Brafman [30] showed
that consistency checking could be conducted efficiently for a wide class of cyclic, bi-
nary CP-nets. As later shown by Goldsmith et al. [42], however, the general problem is
PSPACE-complete. More recently, Santhanam et al. [93, 94] have reduced the problem to

one of model checking in the form of the CRISNER CP-nets reasoning tool.

40

www.manaraa.com



3.4 Reasoning with CP-nets

Given a pair of distinct outcomes, the reasoning problem involves determining which
outcome, if either, is preferred. Section 3.4.1 discusses dominance testing, the strongest
method of reasoning. Section 3.4.2 then considers the weaker method or ordering queries.

Finally, heuristic methods are discussed in Section 3.4.3.

3.4.1 Dominance Testing

Recall from Section 2.4 that, given a CP-net N with strict preferences and a pair of out-
comes o and o', dominance testing (DT) determines whether there exists an improving
[flipping sequence from o’ to o. If so, the CP-net said to entail that the first outcome domi-
nates the second, written N F o > 0o'.

For arbitrary, possibly cyclic CP-nets, DT is known to be PSPACE-complete [42], and
in certain cases (in particular, chain CP-nets) flipping lengths can be Q(2"/?), i.e., exponen-
tial in the number of nodes n, provided tables are incomplete and domains are multivalued,
even for chain CP-nets [16]. However, Boutilier et al. showed that, in the most general case,
dominance testing can be formulated as a STRIPS-type planning problem. More recently,
Kronegger et al. [61] have established several fixed parameter tractability (FPT) results for
dominance testing in a generalized class of CP-nets (GCP-nets) (similar to those studied
by [42]). Many of their FPT results also apply to CP-nets.

Several tractable subclasses for DT are known. Boutilier et al. [16] showed that DT can
be conducted in ®(n?) time for binary valued tree CP-nets with their DT-Tree algorithm,
which also returns a flipping sequence if one exists. They claim that the algorithm remains
complete, with the same time complexity, when CPTs are incomplete. Bigot et al. [11]
subsequently described an algorithm they claim can answer dominance in O(n) time for
the same class of CP-nets (except that CPTs must also be complete), an unexpected result,
since the flipping length is O(n?) for such CP-nets. Thus, while the decision problem can

be answered in linear time, computing the flipping sequence itself requires quadratic time.

41

www.manaraa.com



Table 3.2: Computational Difficulty of Dominance Testing

Graph Domains CPTs DT Complexity Running Time References
Directed Forest Binary Complete P O(n) [11]
Directed Forest Binary * P o(n?) [16]
Directed Forest * * NP-hard ? [16]
Polytree Binary ¥ P 0(2%n*+3) [16]
DPSCG Binary * NP-complete ? [16]
Max-6-connected Binary * NP-complete ? [16]
* * * PSPACE-complete ? [42]

*No restriction

In the case of polytree CP-nets, Boutilier et al. [16] showed that DT could be answered
in polynomial time via their reduction to planning. Specifically, the algorithm requires time
0(2*n**3) where c is the assumed bound on indegree in the dependency graph. How-
ever, even when variables are binary, DT for directed-path singly connected CP-nets is
NP-complete if CPTs are complete (and NP-hard otherwise). The problem remains NP-
complete when the number of paths between any two nodes in the graph is polynomially
bounded (i.e., max-d-connected graphs). Table 3.2 summarizes the computational com-

plexity and running times of DT algorithms for various classes of CP-nets.

3.4.2 Ordering Queries

Because dominance testing is hard in many cases, Boutilier et al. [16] also introduced
a weaker, incomplete method of reasoning with CP-nets. Rather than asking whether a
flipping sequence exists between a pair of outcomes, the method searches for local rules
that would contradict the existence of such a sequence. Given a CP-net N and a pair of
outcomes o and o', o is said to be consistently orderable over o’ if N [£ o’ > o. They call
this search for local contradictions an ordering query and show that it can be completed
in linear time in the number of variables, provided CPTs are complete. (The complexity
of ordering queries for incomplete CP-nets seems to be an open problem. However, the
authors note that they suspect it is hard.) Let N o,y 0 > o’ denote that o is consistently

orderable over o’ with respect to CP-net N. Note that N |,y 0 > 0o = N £ 0’ > o.

42

www.manaraa.com



However, when N [£,q 0 > 0" A N [£oq 0° > o, it could still be the case that N = o > o/,
NEO >o,orNEol| o.

To better understand the nature of this method of ordering, recall that a CP-net induces
a partial order on outcomes. If o is consistently orderable over o', it means only that o is
ordered before o’ in some linear extension of the induced partial order (see Section 1.1.2).
However, if o dominates o’, then it follows that o is ordered before o’ in every such linear

extension.

3.4.3 Reductions and Heuristic Methods

In general, DT involves a search for a flipping sequence that connects the two outcomes.
Any of the familiar search methods in Al, e.g., iteratively deepening depth-first search,
can be employed. Boutilier et al. [16] introduced two methods of pruning the search tree,
suffix fixing and forward pruning, that work in all cases, as well as a heuristic method,
least-variable flipping, that is incomplete except for binary-valued tree-shaped CP-nets. In
addition to the reduction to STRIPS-type planning [16], DT problems can also be reduced
to model checking [92, 93] (similar to their reduction for the consistency problem; see
Section 3.3). Finally, Li et al. [68] have proposed a heuristic approach to DT in acyclic,
generally multivalued CP-nets that they call DT*. While the algorithm is inspired by A*,
it does not seem to guarantee optimality; i.e., it does not always return a shortest flipping

sequence.

3.5 Learning CP-nets

Recall from Section 1.2.3 that, aside from direct construction by the subject, which is
problematic since it relies on introspection, learning a CP-net can take the form of active
elicitation or passive learning from data. The earliest work on learning CP-nets seems to be
that of Athienitou and Dimopoulos for the MPREF-2007 conference [6]. They introduced

a passive learning algorithm that attempts to recover a CP-net that entails all examples

43

www.manaraa.com



in a set of outcome comparison data. However, as observed by Lang and Mengin [65],
entailment is an exceptionally strong requirement. Suppose a subject has a linear order
on the outcome space, arising from some utility function (see 1.1.1). Arguably, then, the
goal is not to “recover” some presumed original CP-net, but to learn a CP-net such that
the observed comparison data are consistent with the learned model. They proposed three
notions of consistency for CP-nets. Lang and Mengin were also among the first to study the
complexity of the learning problem. To establish a lower bound, they proposed a simple
class of so-called separable CP-nets (SCP-nets) for which the dependency graph is an
antichain, i.e., a graph with no edges. In a later paper [66] they succeeded in proving that,
while it was possible to answer in polynomial time whether there exists a binary-valued
SCP-net that entails all examples, the problem of deciding whether there exists such a
network that is weakly consistent with all examples is NP-complete.

Meanwhile, Koriche and Zanuttini explored a somewhat different learning problem,
that of active elicitation. They framed the problem as one of Angluin-style learning, at-
tempting to elicit CP-nets via adaptively generated swap queries, i.e., comparisons in which
the two outcomes differ in the value of just one variable (as in flipping sequences) [58, 59].
Among their contributions was introducing the concept of query complexity. Rather than
defining complexity in terms of computation size, they defined an attribute efficient algo-
rithm as one for which the number of queries is polynomial in the number of variables.
They also described Angluin-style membership and equivalence queries for CP-nets: the
relationship between the two types of queries is analogous to that of ordering queries and
dominance testing for reasoning with CP-nets. Koriche and Zanuttini showed that it was
not possible to learn a CP-net with equivalence queries alone, but that membership queries
were also required. They presented an algorithm showing it was possible to learn binary-
valued tree-structured CP-nets in an efficient manner given this definition.

Dimopoulos et al. continued work on the problem of learning CP-nets passively from

data, improving on their research from a few years before. They introduced an algorithm

44

www.manaraa.com



that attempted to learn an acyclic, binary-valued CP-net that was consistent with all out-
come comparisons in a preexisting database [29]. Their algorithm first attempted to identify
variables over which the subject’s preferences were unconditional (those with O parents),
then variables with 1 parents, 2, and so on, until a node for each variable had been added
to the model.

A crucial step for each node involves determining whether a prospective set of nodes
could be the parents of the node under consideration. To determine this, the authors pro-
pose constructing a 2SAT instance, which is solvable in linear time, such that the solution
provides a CPT and establishes a position in the network for the node that is consistent with
all available comparison data. However, in some cases the algorithm may output failure in-
stead of a CP-net. Additionally, in the worst case the algorithm could iterate an exponential
number of times in the number of variables. They also proved that the problem of learn-
ing a CP-net consistent with comparison data was hard even for acyclic, binary CP-nets to
which other simplifying assumptions had been applied.

Recently Guerin et al. [47, 48] have proposed an elicitation algorithm for learning CP-
nets from user queries. The algorithm is similar in many respects to that of Dimopoulos
and Athienitou, but employs active elicitation rather than passive learning. The algorithm
is also distinctive in that it allows subjects to introspect on their preferences by asking for
a default, most-preferred value for each variable.

One of the problems inherent in learning preferences from human subjects is the pos-
sibility of noise or comparison data that are ultimately inconsistent through transitive clo-
sure. Liu et al. [70] propose maximizing the number of outcome comparisons that can be
included using a branch-and-bound approach. The method they propose—which is not
restricted to binary-valued domains—first learns a preference graph for the subject, then
constructs a CP-net from the preference graph. They claim that their algorithm runs in time
polynomial in the size of the preference graph. However, recall that the size of the pref-

erence graph is exponential in the number of features. Moreover, because the algorithm

45

www.manaraa.com



employs a branch-and-bound method, it seems unlikely that it is polynomial even in the
size of the preference graph; it seems more likely that the worst-case running time is actu-
ally doubly exponential in the number of features. In their conclusion, Liu et al. mention
the possibility of exploiting an approximation method rather than branch-and-bound for
learning CP-nets from possibility inconsistent data. While this is an interesting proposal, I
am not yet aware of any algorithm that exploits such a method or of theoretical results on
the complexity of the problem of approximating CP-nets.

Finally, Cornelio et al. have explored the possibility of updating a learned CP-net after

additional data have been collected, without recreating it entirely [25, 26].

3.6 Experiments with CP-nets

Proposed CP-net algorithms are typically evaluated with theoretical proofs, experiments,
or both; Table 3.3 summarizes several studies involving CP-net learning or reasoning and
the methods of evaluation. Ideally, algorithms would be evaluated at least in part using ac-
tual CP-nets obtained from human subjects. Unfortunately, no such datasets are presently
available [3]. Datasets from which CP-nets can be learned are also problematic. The
PrefLib preference data repository [75], for example, provides only two combinatorial
preference datasets. One consists of approval ballots and ratings for candidates in the
2002 French election; the other consists of hotel reviews submitted to the Trip Advisor
travel site. However, it is unclear how these could be used to construct CP-nets for an
experiment, and to date neither dataset has been cited in any CP-net study. The SUSHI
preference dataset [53], consisting of user’s ratings, ranking, and the feature composition
of different types of sushi, has been adapted by at least one team of authors for their CP-net
learning algorithms [69, 70]. However, this sort of adaptation, while fairly common in the
computational social choice and preference learning communities, involves numerous data
modeling decisions that can undermine the validity of such experiments [81, 84]. While

Allen et al. [3] describe a rigorous psychological experiment on whether human prefer-

46

www.manaraa.com



Table 3.3: Evaluation Methods for Proposed CP-net Algorithms

8
<
L=
%D on 2 %
5 8 £ : &
Study g 2 & »n &
Allen [1] v v v Y
Bigot et al. [11] v v
Bigot et al. [12] vV v
Boutilier et al. [16] Vv
Dimopoulos et al. [29] v
Eckhardt and Vojtas [33, 34] v v
Guerin et al. [47] vV v
Koriche and Zanuttini [58, 59] v v
Kronegger et al. [61] v v v
Li et al. [68] v v/
Liu et al. [69, 70] v v v Y
Santhanam et al. [92] Vv v/

ences can be consistently modeled with CP-nets, the results of that experiment are not yet
available. Therefore, due to the lack of suitable real-world data, researchers often rely on
synthetic datasets. However, as discussed in detail in Chapter 4, synthetic data are also

problematic due to naive generation methods.

3.7 Extensions to the Formalism

We conclude with a brief discussion of a few of the many proposed extensions to the CP-net

formalism—GCP-nets, TCP-nets, mCP-nets, and PCP-nets.

¢ General CP-nets (GCP-nets) dispense with the explicit graphical structure of clas-
sical CP-nets and consist only of a set of conditional preference rules. Such a for-
malism is helpful for networks that may contain cycles and be highly complex in the
interrelationships among nodes. As such, GCP-nets can facilitate the proof of certain
complexity results and were employed both in the PSPACE-completeness proofs of

Goldsmith et al. [42, 43] and in the FPT results of Kronegger et al. [61].

47

www.manaraa.com



o Tradeoffs-enhanced CP-nets (TCP-nets), introduced by Brafman et al. [19], ex-
tends the CP-net formalism by allowing the model to reflect the relative importance
assigned to the features. In addition to the directed edges indicating conditional de-
pendencies, the model includes two additional types of edges: importance arcs, di-
rected edges showing that one variable is more important to the subject’s satisfaction
than the other, and conditional importance arcs, indicating the relative importance of
variables given the values assigned to other nodes in the graph. While the proposed
formalism is highly expressive, its greater complexity (at least for human users) has

perhaps limited its adoption.

e mCP-nets were conceived by Rossi et al. [89] as a formalism for representing the
preferences of multiple agents. The preferences of m individual agents are repre-
sented as a partial CP-net, and the semantics of the aggregated mCP-net are related
to voting. Recently, Lukasiewicz and Malizia [72] have studied the computational

complexity of various problems involving mCP-nets.

e Probabilistic CP-nets (PCP-nets) were proposed by Cornelio [26] and later refined
by Bigot et al. [11] and Cornelio et al. [25]. Whereas CP-nets are deterministic,
PCP-nets assign a probability to every conditional preference rule. PCP-nets are
presently limited to O-legal structures with strict preferences over binary domains
and complete CPTs. Such networks assume that the probabilities of each node are
independent and hence that the probabilities of edges can be calculated using the
product rule. Cornelio [26] has also explored the connection between PCP-nets and
Bayesian networks. Based on this close relationship with Bayesian networks, Bigot
et al. [12] have subsequently shown that PCP-nets can be learned in polynomial time

from a set of optimal outcomes when the dependency graph is tree-shaped.

Copyright © Thomas E. Allen, 2016.

48

www.manaraa.com



Chapter 4 Generating CP-nets Uniformly at Random

Methods for generating random data have long been of interest to computer scientists—
Alan Turing advocated for a random number generator in the 1951 Ferranti Mark I com-
puter [55]—and continue to be an active topic of research. Random generation not only of
numbers, but of combinatorial objects such as spanning trees and paths in directed graphs
have been studied across both mathematics and computer science [62]. However, methods
for generating complex preference models such as CP-nets in a uniform manner have not
yet received attention.

There is considerable value in being able to generate CP-nets uniformly at random,
including: enabling experimental analysis of CP-net reasoning algorithms, unbiased black-
box testing, effective Monte Carlo algorithms, analysis of all CP-nets to better understand
their properties, and simulations for decision making or social choice experiments. Com-
plementing theoretical re